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&THE UPCOMING ERA of pervasive computing will be

characterized by many smart devices that—because

of the tight cost constraints inherent in mass deploy-

ments—have very limited resources in terms of

memory, computing power, and battery supply. Here,

it’s necessary to interpret Moore’s law differently:

Rather than a doubling of performance, we see

a halving of the price for constant computing power

every 18 months. Because many foreseen applications

have extremely tight cost constraints—for example,

RFID in tetrapacks—over time, Moore’s law will

increasingly enable such applications. Many applica-

tions will process sensitive health-monitoring or bio-

metric data, so the demand for cryptographic compo-

nents that can be efficiently implemented is strong and

growing. For such implementations, as well as for

ciphers that are particularly suited for this purpose, we

use the generic term lightweight cryptography in this

article.

Every designer of lightweight cryptography must

cope with the trade-offs between security, cost, and

performance. It’s generally easy to optimize any two of

the three design goals—security and cost, security and

performance, or cost and performance; however, it is

very difficult to optimize all three

design goals at once. For example,

a secure and high-performance hard-

ware implementation can be achieved

by a pipelined, side-channel-resistant

architecture, resulting in a high area

requirement, and thus high costs. On

the other hand, it’s possible to design

a secure, low-cost hardware implemen-

tation with the drawback of limited performance.

In this article, we present a selection of recently

published lightweight-cryptography implementations

and compare them to state-of-the-art results in their

field. This survey covers recent hardware and software

implementations of symmetric as well as asymmetric

ciphers. We will discuss software and hardware

implementations separately, because they have differ-

ent and sometimes contrary characteristics. For

example, bit permutations are virtually free in

hardware, whereas in software they can significantly

slow down implementations. Also, large substitution

tables are often software friendly, but hardware

realizations can be relatively costly. Finally, the

evaluation metric is different: For software implemen-

tations, we compare both RAM and ROM requirements

and the required number of clock cycles. For

hardware implementations, we focus on the required

chip size and the number of clock cycles. We don’t

compare power consumption for the hardware

implementations, because different standard-cell tech-

nologies were used and estimates from simulating

environments are not accurate. Software implementa-

tions let us achieve a rough estimate of power
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consumption by multiplying the processing time by

the average power consumption of the target device.

Another distinction is between symmetric and

asymmetric ciphers, because the latter offer more

security functionality and therefore have different

application scenarios. Symmetric ciphers serve mainly

for message integrity checks, entity authentication,

and encryption, whereas asymmetric ciphers addi-

tionally provide key-management advantages and

nonrepudiation. Asymmetric ciphers are computation-

ally far more demanding, in both hardware and

software. The performance gap on constrained

devices such as 8-bit microcontrollers is huge. For

example, an optimized asymmetric algorithm such as

elliptic-curve cryptography (ECC) performs 100 to

1,000 times more slowly than a standard symmetric

cipher such as the Advanced Encryption Standard

(AES) algorithm, which correlates with a two- to three-

orders-of-magnitude higher power consumption. Un-

like block ciphers, which are well investigated and

understood, stream ciphers have received little

attention from the scientific community. Although this

has recently started to change, we cite stream ciphers

only for comparison. (The increasing interest in stream

ciphers is apparent in projects such as eStream, within

the European Network of Excellence in Cryptography,

which aims to foster knowledge about stream ciphers.)

The ‘‘Related work’’ sidebar summarizes some recent

developments in lightweight cryptography.

Symmetric ciphers
Many works on symmetric ciphers have been

published during the past two decades. Because most

main applications of symmetric ciphers use software

implementations, it’s no surprise that nearly all

algorithms—for example, the AES—have been de-

veloped with good software performance in mind. The

paradigm shift that we foresee will likely lead to an

increasing demand for lightweight ciphers that per-

form well in hardware. Therefore, we focus here on

recently published works on ciphers that have been

developed for minimal hardware requirements—

namely, DESL1 and Present.2

Hardware implementations of symmetric ciphers

The only well-established cipher designed with

a strong focus on low hardware cost is the Data

Encryption Standard (DES). Comparing a standard

one-round implementation of AES and DES, we find

that the latter consumes only about 6% of the logic

resources of AES and has a shorter critical path.

However, researchers have described a low-power,

low-cost AES implementation that requires only 3,400

gate equivalents (GEs) and encrypts a plaintext within

1,032 clock cycles.3 This impressive result seems to

have achieved the limit in area minimization. This

implementation, as well as the implementations of

DESL and Present, features encryption only, because

encryption is sufficient for many lightweight target

applications, such as authentication with a challenge-

response protocol.

DES. Inspired by the one-round implementation

results of AES and DES, we implemented a serialized

version of DES that processes 4-bit and 6-bit data words

rather than those with 32 bits and 48 bits. Our

implementation requires 2,310 GEs and encrypts

a plaintext within 144 clock cycles.1 To our

knowledge, this is the smallest reported DES

implementation, sacrificing throughput to achieve

minimal area requirements. However, the 56-bit key

limits the security provided. Brute-forcing this key

space using software takes a few months and

hundreds of PCs, but only a few days with a special-

purpose machine such as Copacobana.4 Hence, this

implementation is relevant only for applications

needing short-term security or where the values

protected are relatively low. In certain low-cost

applications, such a security level is adequate. When

a higher security level is needed, so-called key

whitening, can be added to standard DES, yielding

DESX. The key-whitening technique requires only two

additional XOR gates: one gate to add a prewhitening

key to the plaintext before the cipher processes it, and

another to add a postwhitening key to the resulting

ciphertext. In the case of DES, this enlarges the key

space from 56 bits to 184 bits. However, because of

time-memory trade-offs (birthday attack), the security

level of DESX is bounded by 118 bits.

DESL and DESXL. In our serialized DES implemen-

tation, substitution boxes (S-boxes) take up approxi-

mately 32% of the area. We can further decrease the

gate complexity of DES by replacing the eight original

S-boxes with a single new one, eliminating seven S-

boxes as well as the multiplexer. This lightweight DES

variant is called DESL and results in an approximately

20% smaller chip than DES (1,850 GEs versus 2,310

GEs). The S-box has been carefully selected and highly

optimized, enabling DESL to resist common attacks
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such as linear and differential cryptanalysis and the

Davies-Murphy attack. Thus, DESL achieves a security

level appropriate for many applications. Key

whitening can be applied to strengthen the cipher,

yielding the DESXL cipher, with a security level of

approximately 118 bits. DESXL requires 2,170 GEs and

encrypts a plaintext within 144 clock cycles. (Further

details are available elsewhere.1)

Present. Besides efficiently implementing or slightly

modifying an established cipher, an alternative for

lightweight cryptography is to design a new hardware-

optimized cipher from scratch. We followed this

approach when designing Present, an SPN-based

(substitution permutation network) block cipher

with 32 rounds, a block size of 64 bits, and a key size

of 80 or 128 bits. The main design philosophy was

0
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Related work

There are many recent symmetric ciphers—for

example, Hight, Clefia, DESXL,1 and Present2—with

special implementation properties proposed. Hight was

first presented at the 2006 Workshop on Cryptographic

Hardware and Embedded Systems and was designed

with good hardware performance in mind. In their

paper, the authors provide hardware figures for a one-

round implementation—that is, one round is performed

in one cycle—and they conclude that Hight is well-

suited for ubiquitous computing devices such as

wireless sensor nodes and RFID tags. Their figures

show that Hight requires approximately the same chip

size as the Advanced Encryption Standard (AES)

algorithm (3,048 versus 3,400 gate equivalents, or

GEs) but is much faster. However, figures for imple-

mentations with a smaller footprint in hardware are not

yet available. Clefia was designed with a broader

application range in mind—to perform well in both

hardware and software implementations. Two ciphers

especially optimized for software architectures are the

Tiny Encryption Algorithm (TEA) family and the In-

ternational Data Encryption Algorithm (IDEA). They

consist only of arithmetic operations on 16-bit words

(IDEA) and 32-bit words (TEA). IDEA consists of

addition, XOR addition, and multiplication. The TEA

family uses only addition, XOR addition, and shifts. In

both cases, each operation can be implemented

efficiently on 8-bit platforms. Neither cipher uses

a substitution box (S-box), so they don’t need much

memory. The Scalable Encryption Algorithm (SEA) can

be parameterized according to processor size as well

as plaintext size and key size; the goal is to enable

efficient implementations on different platforms.

With respect to asymmetric algorithms on small

processors, Gura et al.3 make a key contribution,

comparing RSA (Rivest, Shamir, Adleman) and elliptic-

curve cryptography (ECC) on two different, commonly

used 8-bit CPUs: AVR (the Atmel ATmega128 platform)

and 8051 (the Chipcon CC1010 platform). They show

that for the Atmel ATmega128 clocked at 8 MHz, a point

multiplication using a 160-bit ECC GF(p) standard

curve required 0.81 second. A security equivalent

1,024-bit RSA encryption requires about 11 seconds.

Consequently, this article considers only ECC in the

asymmetric case. Although hyperelliptic curves hold

promise too, their lack of standardization makes them

less promising at the moment. Optimum extension

fields (OEFs), which can be parameterized for small

CPUs, offer an alternative method for fast ECC

implementations.4 Several hardware implementations

for standardized ECC have been suggested, but few

are aimed at low-end devices. Most implementations

focus on speed and, owing to their huge area

requirements, are suitable mostly for server-end appli-

cations only.5
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simplicity: No part of the cipher was

added without a good reason, such as

thwarting an attack. Figure 1 depicts

Present’s very simple design. Let’s take

the round counter XOR in the key

scheduling as an example of how to

thwart a whole class of attacks with

minimal area overhead. Hardware

designers favor repetition because it

lets them reuse parts of the chip and

hence reduce chip size. However, if the

key-update functions are similar in each

round, this property can be exploited by

related-key attacks. Among the possi-

bilities for achieving deviating round functions, we

chose the one that is most hardware efficient and

simple: adding a round-dependent constant in the key

scheduling. Because a round counter is needed

anyway, this constitutes no additional area

requirements; the XOR requires only 13 GEs.

Present, like any other SPN, comprises three stages:

a key-mixing step, a substitution layer, and a permuta-

tion layer. For the key mixing, we chose a simple XOR

because this operation can be implemented efficiently

in both hardware and software. The key schedule

consists essentially of a 61-bit rotation together with an

S-box and a round counter. (Present-80 uses a single S-

box, whereas Present-128 requires two S-boxes.) The

substitution layer comprises 16 S-boxes with 4-bit

inputs and 4-bit outputs (4 3 4). We decided to use

similar S-boxes in both the data path and the key

scheduling because we learned from DESL that this

can result in significant area savings when a serialized

implementation is desired. The choice of 4 3 4 rather

than 8 3 8 S-boxes was also hardware driven; 8-bit

S-boxes require about 40 times more area than 4-bit

S-boxes (1,000 GEs versus 25 GEs). However, 4-bit

S-boxes must be selected very carefully because they

are cryptographically weaker than 8-bit S-boxes.

Nevertheless, through careful selection, it’s possible

to achieve an appropriate security level. The permu-

tation layer is a very regular and simple bit trans-

position. It comes virtually free in hardware because it

is realized by simple wiring and hence needs no

transistors. The permutation layer ensures that an S-

box’s four output bits will be distributed to four distinct

S-boxes in the following round, which ensures the

avalanche effect. This is required to thwart linear and

differential cryptanalyses. (Further details are available

elsewhere.2)

Table 1 compares the implementation results of

various lightweight ciphers.

Software implementations of symmetric ciphers

The many design choices within the AES reflect the

wide discussion of efficient symmetric cryptography

for software implementations. Yet, for constrained

devices in particular, designers must take into account

the target platform’s special properties when choosing

cryptographic algorithms.

In many areas where cost and energy considera-

tions dominate, computational power comes in the

form of a small, inexpensive CPU. By a wide margin,

8-bit controllers have the largest share of the worldwide

CPU market. These small microcontrollers are con-

strained in program memory (flash or ROM), RAM,

clock speed, register width, and arithmetic capabilities.

In this context, efficiency means more than simply

throughput: Resources needed to implement a cipher

should be kept small. In fact, in many situations,

resource efficiency (measured mainly by memory

consumption) is more critical than throughput, espe-

cially because many embedded applications encrypt

only small payloads. Typically, these 8-bit microcon-

trollers offer as little as tens of kilobytes of program

memory, and sometimes less than 1 Kbyte of SRAM;

they usually operate at clock speeds of a few MHz.

Nevertheless, especially for battery-powered de-

vices, low computational complexity can be of great

value too because processing time directly correlates

with power consumption. Modern microcontrollers

can enter a variety of power-down and power-saving

modes as soon as they have finished computation.

Hence, a fast-executing algorithm can reduce energy

consumption and lengthen the lifetime of a battery-

powered device.

0
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In this context, we compare the previously

discussed ciphers that are primarily optimized for

hardware with several software-friendly ciphers. For

comparison, we added two software-oriented stream

ciphers of the eStream project: Salsa20 and LEX.6 The

latter is a modified AES in which several bytes of the

intermediate states are extracted and used as a key

stream. Salsa20, like the Tiny Encryption Algorithm

(TEA) and the International Data Encryption Algo-

rithm (IDEA), is based on simple arithmetic opera-

tions. We chose these ciphers because their consump-

tion of ROM and RAM is suited for small embedded

processors. Stream ciphers usually have lengthy setup

phases. LEX needs only one AES encryption for setup,

and Salsa20’s setup phase is even shorter. Hence, these

ciphers can provide efficient encryption of the small

payloads often found in embedded systems. All the

discussed ciphers were implemented for 8-bit AVR

microcontrollers. AVRs are a popular family of 8-bit

RISC microcontrollers. The ATmega family offers 8

Kbytes to 128 Kbytes of flash memory and 1 Kbyte to 8

Kbytes of SRAM. The devices of the ATmega series

have 32 general-purpose registers with a word size of 8

bits. Most of the microcontrollers’ 130 instructions are

one cycle, and the microcontrollers can be clocked at

up to 16 MHz.

To keep the source code small, we used a straight-

forward approach for all our software implementa-

tions. Only the substitution tables are realized as

lookup tables (LUTs), where applicable, because this

provides an enormous speedup for reasonable mem-

ory consumption. Many fast software implementations

of ciphers use larger LUTs to achieve a higher

throughput. Unfortunately, this leads to an unaccept-

able increase in code size for many embedded

applications. The LUTs are stored in the program

memory (ROM). TEA, IDEA, and Salsa20 do not use

substitution tables, which allows for a smaller code.

For the inversion needed in IDEA, we used a slow but

extremely small algorithm. This explains the small

code as well as the huge discrepancy between

encryption and decryption time.

The results of our implementations appear in

Table 2. As expected, the software-oriented ciphers

perform better on our platform. We had problems

decreasing the code size of Hight, but it still shows

good encryption performance. Although Present

shows poor performance, its code, along with that of

IDEA, is extremely small. LEX is a modified AES cipher,

yet its code is smaller than that of AES because it lacks

the decryption part.

Considering the trade-offs between security, cost,

and performance, the stream ciphers seem to be

a good choice. LEX and Salsa20 do well in both

throughput and size, yet they are good choices only if

the encrypted payload is sufficiently large. Otherwise,

they produce a computational overhead because of

their huge block length and their setup phase.

When code size is extremely critical, TEA, IDEA,

and even Present seem to be reasonable choices. For

most other cases, AES again shows its strength in

software.

Asymmetric ciphers
Among public-key algorithms, there are three

established families of practical relevance: ECC, RSA

0
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Table 1. Comparison of lightweight ciphers.

Cipher

Key

bits

Block

bits

Cycles per

block

Throughput at

100 kHz (Kbps)

Logic

process

Area

(GEs)

Block ciphers

Present 80 64 32 200.00 0.18 mm 1,570

AES 128 128 1,032 12.40 0.35 mm 3,400

Hight 128 64 34 188.20 0.25 mm 3,048

Clefia 128 128 36 355.56 0.09 mm 4,993

mCrypton 96 64 13 492.30 0.13 mm 2,681

DES 56 64 144 44.40 0.18 mm 2,309

DESXL 184 64 144 44.40 0.18 mm 2,168

Stream ciphers

Trivium5 80 1 1 100.00 0.13 mm 2,599

Grain5 80 1 1 100.00 0.13 mm 1,294

*AES: Advanced Encryption Standard; DES: Data Encryption Standard; DESXL: lightweight DES with key whitening.
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(Rivest-Shamir-Adleman), and discrete logarithms.

ECC is considered the most attractive family for

embedded environments because of its smaller

operand lengths and relatively lower computational

requirements. ECC has been accepted commercially

and has also been adopted by standardizing bodies

such as the American National Standards Institute

(ANSI), the IEEE, the International Organization for

Standardization (ISO), the Standards for Efficient

Cryptography Group (SECG), and the National In-

stitute of Standards and Technology (NIST).

A lightweight elliptic-curve engine

Interest is growing in stand-alone asymmetric

cipher engines in small, constrained devices for

applications such as sensor networks and contactless

smart cards (for example, e-passports). This interest is

normally dictated by the need for better performance

to satisfy a communication protocol or energy

constraints.

Here, we present a hardware implementation of

a low-area, stand-alone, public-key processor for

standardized ECC curves, details of which can be

found elsewhere.7 We sacrifice flexibility to save area

by setting the design to fit a specific standardized

binary-field curve that is quite reasonable for con-

strained devices. Standardized binary fields that pro-

vide short-term security (113 bits), as well as fields that

are required for medium-term security applications

(193 bits), are implemented. For some constrained

applications, 113-bit fields provide adequate security.

The main reason for choosing a binary field rather

than a prime field is the carry-free arithmetic, which is

well-suited for hardware implementations. A second

reason is the simplified squaring structure, which is

a central idea used in the algorithms chosen for the

processor design.

Inversion. Itoh and Tsujii proposed the construction

of an addition chain such that the inversion could be

performed in O(log m) multiplications.8 Although the

algorithm was proposed for optimal normal-basis

implementations, where squarings are almost free

(cyclic rotations), the area requirement for the

squaring structure in our implementation is within

bounds but has the same timing efficiency of 1 clock

cycle as in the normal basis. Our algorithm exploits the

fact that squaring is very efficient in the standard basis

as long as the field is fixed. It’s easy to show that the

inverse A21 can then be obtained in (tlog2(m 2 1)s +
Hw(m 2 1) 2 1) multiplications and (m 2 1)

squarings using this addition chain, where Hw

denotes the Hamming weight of the binary

representation.

Point multiplication. We used a modified version of

the Montgomery algorithm for implementing the

point multiplication. We require one inversion and

0
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Table 2. Comparison of software implementations of ciphers.

Cipher

Key

size

(bits)

Block

size

(bits)

Encryption

(cycles/

block)

Throughput

at 4 MHz

(Kbps)

Decryption

(cycles/

block)

Relative

throughput

(% of AES)

Code

size

(bytes)

SRAM

size

(bytes)

Relative

code size

(% of AES)

Hardware-oriented block ciphers

DES 56 64 8,633 29.6 8,154 38.4 4,314 0 152.4

DESXL 184 64 8,531 30.4 7,961 39.4 3,192 0 112.8

Hight 128 64 2,964 80.3 2,964 104.2 5,672 0 200.4

Present 80 64 10,723 23.7 11,239 30.7 936 0 33.1

Software-oriented block ciphers

AES 128 128 6,637 77.1 7,429 100.0 2,606 224 100.0

IDEA 128 64 2,700 94.8 15,393 123.0 596 0 21.1

TEA 128 64 6,271 40.8 6,299 53.0 1,140 0 40.3

SEA 96 96 9,654 39.7 9,654 51.5 2,132 0 75.3

Software-oriented stream ciphers

Salsa20 128 512 18,400 111.3 NA 144.4 1,452 280 61.2

LEX 128 320 5,963 214.6 NA 287.3 1,598 304 67.2

*IDEA: International Data Encryption Algorithm; TEA: Tiny Encryption Algorithm; SEA: Scalable Encryption Algorithm.
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four multiplications in each iteration. The algorithm

also lets us compute each iteration without requiring

extra temporary memory locations, thus reducing

area.

ECC processor design. The overall design appears

in Figure 2. The three units—GF(2m) addition; GF(2m)

multiplication, implemented as an MSB-first (most-

significant-bit) multiplier; and GF(2m) squaring—are

closely interconnected inside a single arithmetic unit

sharing the common input data bus A. The adder

needs an additional data bus B for the second operand,

and the multiplier requires a single-bit bi signal for the

multiplicand. The operands are stored in the memory

as registers (some of them as cyclic registers) with the

output being selected for A, B, and bi using

multiplexers with control signals (Asel, Bsel, and bi_sel)

from the controller. All the operand registers are

connected in parallel to data bus C, with the

appropriate register being loaded on the basis of the

controller load signal Cld_reg.

Inversion, as described, requires no additional

hardware apart from the preexisting multiplying unit

and squaring unit, with some additional control

circuitry to enable loading the proper variables to

the appropriate unit.

The implementation was synthesized for a custom

ASIC design using AMI Semiconductor 0.35-micron

CMOS technology. The designs have a total area

ranging from 10 K GEs for a 113-bit field for short-term

security to 18 K GEs for a 193-bit field for medium-term

security applications. This implementation shows that

an extremely small-area implementation of an ECC

processor is possible in affine coordinates. Table 3

shows the ECC processor’s total area in GEs and

latency in clock cycles for a single scalar multiplica-

tion and compares them with those of other imple-

mentations.9

Hardware-software codesign for ECC

An ECC coprocessor, as we’ve defined it, can be

small; it can also be prohibitively expensive for many

pervasive applications and can be capable of perfor-

mance that those applications don’t need. Hardware

assistance in the form of instruction set extensions

(ISEs) is more favorable in such situations because the

cost of extra hardware is quite low compared with that

of a coprocessor. Here, we present an efficient ISE

implementation for ECC that is a tightly coupled

hardware and software codesign. As a first step, we

used a software-only ECC implementation to identify

the functional elements and code segments that would

0
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provide efficiency gains if implemented as an ISE.

Then, a hardware model of the new processor

determined the effects of the new extension on such

parameters as execution time, code size, and data

RAM usage.

We used the AT94K family of field-programmable,

system-level ICs as a development platform. This

architecture integrates an AVR 8-bit microcontroller

core and FPGA resources on a single chip. We chose

the standardized 163-bit elliptic curve over GF(2m), as

recommended by NIST and ANSI. We used scalar

point multiplication over this curve for determining the

benefits of the ISE.

The pure software implementation was done first.

Table 4 includes the point arithmetic performance; it

shows that GF(2m) multiplication is the most costly

operation with respect to execution time and memory

requirement. Moreover, in the point multiplication

algorithms, field multiplications are extremely fre-

quent and therefore constitute the bottleneck opera-

tion for ECC. A closer analysis of the multiplication

block shows that most of the time was spent for load

and store operations because the small number of

registers available in the AVR processor could not hold

the large operands. Therefore, a hardware extension

for this functional block would potentially reduce the

memory bottleneck and speed up the ECC.

We present a complete GF(2163) multiplier as an ISE

requiring the minimum possible area. We implemen-

ted two multiplier architectures that provide a trade-off

between performance and the extra area requirement.

The first is a 163 3 163 least-significant-bit-first

multiplier. The multiplier requires 163 AND gates, 167

XOR gates, and 489 flip-flops. A 163 3 163 multiplica-

tion computes in 163 clock cycles, excluding data

input and output. In our implementation, overhead

from control and memory access leads to a total

execution time of 313 clock cycles.

An additional trade-off between area and speed is

possible using the second option, a digit-serial multipli-

0
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Table 3. ECC processor performance for scalar multiplication.

Source Field

Total area

(GEs)

Technology

(mm)

Frequency

(MHz)

Time

(ms)

This work GF (2113) 10,113 0.35 13.560 14.4

GF (2131) 11,970 0.35 13.560 18.0

GF (2163) 15,094 0.35 13.560 31.8

GF (2193) 17,723 0.35 13.560 41.7

Batina et al. GF (267)2 12,944 0.25 0.175 2,390.0

GF (2131) 14,735 0.25 0.175 430.0

Gaubatz et al.10 GF (p100) 18,720 0.13 0.500 410.5

Wolkerstorfer11 GF (2191) 23,000 0.35 68.500 6.7

Ötztürk et al.12 GF (p166) 30,333 0.13 20.000 31.9

Table 4. ECC scalar point multiplication performance at 4 MHz.

Field multiplier

Combinational

logic blocks

Point

multiplier

Time

(s)

Code size

(bytes)

Data RAM

(bytes)

Precomputation

(bytes)

Software multiplier Binary 6.039 10,170 379 544

NAF 5.031 10,654 379

Montgomery 4.140 8,208 358

163 3 163 multiplier 245 Binary 0.264 2,936 294 0

NAF 0.224 3,014 294

Montgomery 0.169 2,048 273

163 3 163 4 digits 498 Binary 0.183 2,936 294 0

NAF 0.115 3,014 294

Montgomery 0.113 2,048 273

*NAF: nonadjacent form.
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er. In a bit-serial multiplier, only one bit of the

multiplicand is used in each iteration; however, in

a digit-serial multiplier, multiple bits (equal to the digit

size) are multiplied in each iteration. We use a digit size

of 4, since it yields a good speedup without drastically

increasing the area requirement. The total area for the

multiplier is 652 AND gates, 684 XOR gates, and 492 flip-

flops. A 163 3 163 multiplication with reduction

requires 42 clock cycles. In our implementation, the

control overhead results in a total of 193 clock cycles.

Our implementation results in Table 4 show that

huge performance gains are possible in small 8-bit

processors by introducing small amounts of extra

hardware. The results show an increase in speed of

one to two orders of magnitude for the ECC

implementation. Hardware costs are in the range of

250 to 500 extra combinational logic blocks (CLBs).

Also, code size and data RAM usage decrease. In an

ASIC-based ISE, where the hardware is more tightly

coupled, the control signal overhead can be consid-

erably reduced, permitting better efficiency.

Software realization of ECC

Using a hardware-software codesign can substan-

tially increase public-key performance with minimal

area. However, in some situations public-key cryptog-

raphy must be implemented purely in software

because changes to the hardware aren’t possible.

Here, we describe an implementation that proves that

public-key cryptography can indeed be used in low-

end 8-bit processors to provide adequate security for

low-end applications. We met these goals by leverag-

ing the computational savings provided by ECC.

For the implementation, we chose Mica motes.

They provide the 8-bit ATmega128L microcontroller,

which comprises 128 Kbytes of in-system reprogram-

mable flash, 4 Kbytes of electrically erasable pro-

grammable ROM (EEPROM), and 4 Kbytes of internal

SRAM. The microcontroller can handle up to 64 Kbytes

of optional external memory space.

As we saw previously, the efficiency of the finite-field

arithmetic, especially the field multiplication, deter-

mines an ECC’s overall efficiency. Because asymmetric

systems are as much as three orders of magnitude

slower than symmetric systems, the main focus is on

speed rather than code size. For the same reason, we

implemented a curve with a fixed bit length (a

standardized 160-bit curve chosen for security reasons).

This seems to be a reliable trade-off between security

and speed. We chose the curve secp160r1 (standard-

ized by Standards for Efficient Cryptography – SEC 2:

Recommended Elliptic Curve Domain Parameters, v1.0,

Certicom Research, 2000) for our implementation.

ECC’s core operation is the scalar multiplication k

3 P, where k is an integer and P is a point on an elliptic

curve. Depending on the protocol used, optimizations

to the scalar multiplication are possible; for example,

the elliptic-curve digital-signature algorithm (ECDSA)

protocol doesn’t require the y-coordinate. Not focusing

on a specific protocol, we use more-general algorithms

to speed up the curve arithmetic to make it reusable

for many protocol-adapted curve implementations.

Because optimizations in the prime field arithmetic

will always improve the ECC system’s performance,

the main focus lies here.

Elliptic-curve arithmetic. The curve multiplication

might be changed or modified for each protocol, so

we implemented a simple binary left-to-right, double-

and-add algorithm. We used Jacobian projective

coordinates for the curve multiplication. This let us

avoid frequent use of the inversion, which is costly in

software. Only one inversion is needed at the end of

the curve multiplication to transform back to affine

coordinates. We used algorithms that mix affine and

Jacobian projective coordinates to significantly

increase speed. Storing one point in the SRAM

requires 320 bits in affine coordinates and 480 bits in

Jacobian projective coordinates. Hence, we traded

SRAM for speed by applying mixed coordinates

0
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Table 5. Performance of ECC scalar multiplication in software.

Finite-field multiplication Platform Time (ms) Time (103 cycles)

Binary multiplication, 160-bit prime field14 ATmega128L 810 6,480

Binary multiplication, 160-bit prime field13 ATmega128L 1,040 8,383

Binary multiplication, 134-bit OEF15 8,051 8,370 100,440

Window multiplication, 134-bit OEF15 8,051 1,830 21,960

*OEF: optimum extension field.
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(Jacobian projective and affine). One multiplication

requires 8,383,488 clock cycles, translating to

1.04 seconds at 8 MHz. (Further implementation

details are available elsewhere.13) In Table 5, we list

several implementations for k 3 P.

Prime field arithmetic. The prime field arithmetic

must provide multiply, add, inversion, and reduction

operations; subtract, halve, and square operations are

optional. The latter three can also be realized by using

the former operations, but with additional overhead.

Hence, subtract and halve were also implemented. To

keep the code size moderate, we did not implement

the square operation.

Operations with the most potential for optimization

are multiplication and reduction. Because the prime

field is based on a pseudo-Mersenne prime, it’s

possible to reduce the prime field by mere shifts and

adds. The prime field arithmetic is completely

implemented in assembly, thereby minimizing code

size and optimizing performance. The greatest com-

putation cost lies in the 160-bit field multiplication.

SRAM operations and the microcontroller’s 8-bit

multiply instruction both need two clock cycles, so

we exclude precalculations. Furthermore, Karatsuba

multiplication does not result in a good trade-off on this

platform. In addition to the theoretical lower bound of

1,600 clock cycles, two bottlenecks occur here: SRAM

access, because the operands do not fit completely in

the registers; and carry handling, because the in-

termediate results need to be accumulated.

The hybrid multiplication14 is a schoolbook variant,

optimized for low SRAM access. The parameter

d indicates how many registers are used to minimize

SRAM access. Using more registers means fewer SRAM

operations are required. We implemented the hybrid

multiplication for d 5 5, which requires about half of

the microcontroller’s registers. This way, the remaining

registers can be used for efficient carry handling.13

Table 6 shows the code size, the number of clock

cycles, and the SRAM required for the various opera-

tions. The listed SRAM requirements are supplemented

in parentheses by the memory needed for the operands.

The code size of 5.44 Kbytes for the 160-bit multiplica-

tion is acceptable, as it is highly optimized for speed.

ESTABLISHED SYMMETRIC CIPHERS can be implemen-

ted with 3,400 GEs in hardware, and about 600 bytes

of code in the software case. Specialized symmetric

ciphers can further reduce the resource requirements

of hardware implementations to as few as 1,570 GEs

with reasonable performance. Contrary to common

belief, stream ciphers do not offer a substantial

advantage in resource-constrained applications for

either hardware or software.

Asymmetric cryptography with a secure bit length

realized in hardware still requires a significantly larger

chip (at least 10,000 additional GEs) than symmetric

cryptography, but it is already reasonably fast.

Hardware-software codesign seems to produce the

best trade-off between size and speed for many

pervasive computing applications. Nevertheless, care-

fully optimizing algorithms in software enables micro-

controllers to perform asymmetric operations in less

than 1 second, and this is sufficient for some

envisioned pervasive applications. &
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Security. His research interests include embedded

security, efficient implementation of cryptographic

algorithms, and physical security. Eisenbarth has an

MS in electrical engineering and computer science

from Ruhr University Bochum. He is a student

member of the IEEE Computer Society and the

International Association of Cryptologic Research

(IACR).

Sandeep Kumar is a research sci-

entist at Philips Research Europe. He

contributed to the work described in

this article while he was a research

assistant working on his doctoral

thesis at Ruhr University Bochum. His research

interests include both hardware and software im-

plementations on constrained devices of crypto-

graphic systems—in particular, elliptic-curve cryp-

tography—and his current focus is on hardware

implementations of physically unclonable functions.

Kumar has a PhD in electrical engineering and

information sciences from Ruhr University Bochum.

He is a member of the IACR.

Christof Paar is the chair of com-

munication security in the Department

of Electrical and Computer Engineer-

ing at Ruhr University Bochum. His

research interests include physical

security, cryptanalytical hardware, security in real-

world systems, and efficient software and hardware

implementations of cryptographic algorithms. Paar

has a PhD in electrical engineering from the

University of Essen. He is a member of the IEEE,

the ACM, and the IACR.

0
IEEE Design & Test of Computers dtco-24-06-pos.3d 4/10/07 08:41:35 10 Cust # pos

Design and Test of ICs for Secure Embedded Computing

IEEE Design & Test of Computers



Axel Poschmann is a PhD candi-

date in the Department of Electrical

and Computer Engineering at Ruhr

University Bochum, where he is also

a research assistant with the Commu-

nication Security Group at the Horst Görtz Institute for
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