The Next 10 Years of IT Security: RFID, BMWs and Burglars

Stanford University
August 20, 2008

Christof Paar
University Bochum
www.crypto.rub.de
Overview

• Embedded Systems and Security
• Case Study 1: Securing RFID
• Case Study 2: High Speed Signature Engine
• Case Study 3: Access Control and Physical Attacks
• Related Activities
What are Embedded Systems?

• "Processor hidden in a product", or
• "A computer that doesn‘t look like a computer"
Characteristics of Embedded Systems

• Definition: „Device with processor“

• Single purpose

• Interacts with the world

• many, many applications
Is this really important?

- current CPU market
- by the numbers

- So, how does embedded technology affect the future IT landscape?
Brave New Pervasive World
Security Concerns in Embedded Applications

- Pervasive nature and **safety-critical** applications increase risk potential: *Hard disk crash vs. car crash*

- Often **wireless channels** ⇒ vulnerable

- **Contents protection** in many applications: iPod, navigation systems, XBox, …

- **Secure SW download**: engine control, cell phones, washing machine,…

- **Component protection**: original spare parts, product privacy protection, …

- **Privacy issues**: biometrics (face recognition), geolocation, medical sensors, monitoring of home activities, etc.

- **Legislative requirements**: passports, road toll, data event recorders in machines,…
Overview

- Embedded Systems and Security
- **Case Study 1: Securing RFID**
- Case Study 2: High Speed Signature Engine
- Case Study 3: Access Control and Physical Attacks
- Related Activities
Lightweight Cryptography

• “We need security with less than 2000 gates”
 Sanjay Sarma, AUTO-ID Labs, CHES 2002

• $3 trillions annually due to product piracy* (> US budget ‘07)

⇒ Authentication & identification problem: can both be fixed with cryptography
⇒ Q: How cheap can we make symmetric ciphers?

*Source: www.bascap.com
Strong Identification (w/ symmetric crypto)

1. random challenge \(r \)
2. encrypted response \(y \)
3. verification
 \[e_k(r) = y' \]
 \[y == y' \]

Challenge: Encryption function \(e() \) at extremely low cost
→ almost all symmetric ciphers optimized with SW in mind
PRESENT – An aggressively hardware optimized block cipher for RFID

- pure substitution-permutation network
- 64 bit block, 80/128 bit key
- 4-4 bit Sbox
- 31 round (32 clks)
- „provable secure“ against DC, LC
- joint work with Lars Knudsen, Matt Robshaw et al.
- no patents etc.
Resource use within lightweight ciphers

Round-parallel implementation of PRESENT (1570ge)

- Registers (state + key) 55%
- Key XOR 11%
- SP Layer ("crypto") 29%

- State 25%
- Key 30%
- XOR 11%
- SP Layer
- Permutation 29%

P

C

Key Schedule

Key

State

P

XOR
• TA product 1-2 orders of magnitude better than smallest AES architecture
• Serial implementation approaches theoretical complexity limit: almost all area is used for the 144 bit state (key + data path)
• smaller than all stream ciphers
• details: CHES ’07 paper
Overview

• Embedded Systems and Security
• Case Study 1: Securing RFID
• **Case Study 2: High Speed Signature Engine**
• Case Study 3: Access Control and Physical Attacks
• Related Activities
Case Study: High Speed Signature Engine

- USA: 42,000+ car fatalities per year (IIHS, 2002)
- 3.2m injuries (2000)
- est.: 90% driver errors

→ Mechanical safety (safety belt, air bag, ABS): great success but limits have been reached

→ Electronic driver assistance will be key tool
Broadcast position & direction information:
1. greatly improve safety
2. improve traffic management

Network characteristics
• small messages (≈ 100 Bytes)
• medium frequency (≈ 10 messages/sec per car)
• very ad-hoc (short lived, high dynamics)
• high number of incoming messages (> 1000msg/sec per car)
• IEEE P1609/DSRC standard

But messages must be authenticated!
(safety-critical & legislative requirements)
Elliptic Curve Primitive

- Given a Point P on an elliptic curve E over $GF(p)$:
 \[E: \ y^2 = x^3 + ax + b \mod p \]

- Public key Q is multiple of base point P
 \[Q = P + P + \ldots + P = \ell P \]

- EC discrete logarithm problem:
 \[\ell = dlog_P(Q) \]
Point Addition on EC
Jacobian Coordinates over GF(p)

- **Point Addition** \(R = P + S \)
- **Input** \(P = (X_1, Y_1, Z_1) \); \(S = (X_2, Y_2, Z_2) \)
- **Output** \(R = (X_3, Y_3, Z_3) \)

\[
\begin{align*}
A &= X_1Z_2^2 \mod p \\
B &= X_2Z_1^2 \mod p \\
C &= Y_1Z_2^3 \mod p \\
D &= Y_2Z_1^3 \mod p \\
E &= B - A \mod p \\
F &= D - C \mod p \\
X_3 &= -E^3 - 2AE^2 + F^2 \\
Y_3 &= -CE^3 + F(AE^2 - X_3) \\
Z_3 &= Z_1Z_2E
\end{align*}
\]

1 Point Add = 14 MUL\textsubscript{256bit} = 3584 MUL\textsubscript{16bit}
Real-Time Signature Engine for VANETs

• **Requirements**
 - 256bit ECC Engine (long-term security)
 - 1000 sign./sec → 1,000,000,000 Mul$_{16}$/sec

• **New VANET Signature Engine**
 - 1 Mul$_{256}$ requires 63 cycles@500MHz
 - 1 ECC VANET engine: > 1500 signatures/sec
 - performance and cost-performance record for commercial hardware
 - patent pending
Overview

- Embedded Systems and Security
- Case Study 1: Securing RFID
- Case Study 2: High Speed Signature Engine
- Case Study 3: Access Control and Physical Attacks
- Related Activities
Case Study Access Control

- Simple access controls: fixed code ("password")
- Eavesdropper duplicates key (cloning)
- But the industry learned...
Case Study Access Control

- advanced theft control: rolling code

 \[\text{code} = e_k(n_i) \]

- rolling code (or hopping code)
 - \(\text{code} = e_k(n) \)
 - \(\text{code} = e_k(n+1) \)
 - \(\text{code} = e_k(n+2) \)
 -

\(e_k() \) is often a block cipher
Popular Rolling Code Cipher: KeeLoq

- Garage door access, car access, user authentication, …
- KeeLoq chip embedded in passive or active RFID transponder („car key“)
- Wikipedia (?): Chrysler, Daewoo, Fiat, GM, Honda, Toyota, Volvo, Jaguar, …

Q: How secure is KeeLoq?
- Best known mathematical attack does not work for rolling code, requires 65,000 encryptions + plaintext + works only for certain (weak) key derivations
- but:

? What about physical attacks??
Side Channel Analysis

 secret key of remote control (HCS XXX Chip)!
Performing the Side-Channel Attack

- Find a suited predictable intermediate value in the cipher
- Measure the power consumption
- Post-process acquired data
- Perform the attack to recover the key
Measuring the Power Consumption

- digital oscilloscope (max. 1 GS/s sample rate)
- measure electromagnetic field or electric current
Performing the Side-Channel Attack
KeeLoq - Encryption

- press button
- write EEPROM
- send hopping code
- KEELOQ
Performing the Side-Channel Attack

1. Analyze cipher
 - Find a suited predictable intermediate value in the cipher

2. Measurements
 - Perform power measurements

3. Post Processing
 - Post-process acquired data

4. Key Recovery
 - Perform the attack to recover the key
Performing the Side-Channel Attack
Key Recovery

- Correlate power consumption to predicted value $y = f(x,k)$
- Divide and conquer approach
- Much off-line number crunching

\[
 r \left(I_i(t), D(X_i, K_h) \right) = \frac{\sum_{i=1}^{M} I_i(t) \cdot D(X_i, K_h)}{\sqrt{\sum_{i=1}^{M} \left(I_i(t) - \bar{I}_i(t) \right)^2 \cdot \sum_{i=1}^{M} \left(D(X_i, K_h) - \bar{D}(X_i, K_h) \right)^2}} - \frac{1}{M} \cdot \sum_{i=1}^{M} I_i(t) \cdot \sum_{i=1}^{M} D(X_i, K_h) \sqrt{\sum_{i=1}^{M} \left(I_i(t) - \bar{I}_i(t) \right)^2 \cdot \sum_{i=1}^{M} \left(D(X_i, K_h) - \bar{D}(X_i, K_h) \right)^2}\]
Side Channel Attack on transmitters

KeeLoq implemented in hardware

Total attack time (for known device family):
5-30 traces, ≈ minutes

Rem: low cost equipment suffices (< $1000)

Convergence of correlation coefficient
Comparison of Packages & Sample Rates

(a) DIP

(b) SOIC

No expensive equipment needed!

Rem: SCA on receivers (software) requires several 1000 traces
So what can we do now?

If we have access to a remote
Recover device key and clone the device

If we have access to a receiver
Recover manufacturer key and generate new remotes
So what can we do now (2)?

After extracting of manufacturing key:

Remotely eavesdrop on 1-2 communications & clone key!

- works for all key derivation schemes
- might require a few hours of computation
 (Rem: not necessary for any system we’ve analysed.)
- SCA attack is not specific to KeeLoq, e.g., unprotected AES is vulnerable too.

! Side-channel step (recovery of manufacturer key, difficult)
can be outsourced to criminal cryptographers!
Overview

- Embedded Systems and Security
- Case Study 1: Securing RFID
- Case Study 2: High Speed Signature Engine
- Case Study 3: High-Speed Vehicular Communication Engine
- Related Activities
Related Workshops

SECSI – Secure Component and Systems Identification
March 2008, Berlin

RFIDSec 2008
July 2008, Budapest

CHES – Cryptographic Hardware and Embedded Systems
August 2008, Washington D.C.

escar – Embedded Security in Cars
November 2008, Hamburg
... and a related book

1. Part
 Embedded technologies in general

2. Part
 Security issues in cars

3. Part
 Business & security

Lemke, Paar, Wolf: Embedded Security in Cars, by Springer
Thank you for your attention!

Christof Paar
www.crypto.rub.de
cpaar@crypto.rub.de