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Abstract

Due to the insecure nature of the wireless link and their dynamically changing topology,
wireless ad-hoc networks require a careful and security-oriented approach for designing
communication protocols. One problem in multi-hop ad-hoc networks is to motivate net-
work nodes to yield some of their constrained resources and to participate in forwarding
the data packets of other nodes through the network. As a solution for ad-hoc networks
with fixed backbone, e.g. Internet or intranet access networks, the secure charging pro-
tocol has been proposed. In this protocol, source and destination nodes are charged
and the intermediate nodes receive a monetary reward for forwarding. The charging in-
formation is protected using digital signatures to establish authentication, integrity and
non-repudiation for the charging information.
In this work, we study the use of digital signatures within this charging protocol. Our
analysis includes the determination of appropriate key sizes and the evaluation of different
signature schemes for this particular application. Focusing on the classical RSA scheme
and the ECDSA scheme, which is based on elliptic curve cryptography, we propose a
measure to assess the performance of these different schemes within the protocol.
Moreover, we developed a speed-optimized implementation of the elliptic curve digital
signature algorithm (ECDSA) and integrated it into a prototype implementation of the
secure charging protocol. In order to enhance the portability and to allow easy reuse for
other applications, we designed our implementation such that it can easily replace the
ECDSA routines of the open-source crypto library OpenSSL 0.9.8. On a Sharp Zaurus
PDA platform, which is a typical device used in wireless ad-hoc networks, our implemen-
tation has an execution time of 5.4ms for signature generation and 11.7ms for signature
verification. These times were obtained for 163-bit Koblitz curves. The times of our im-
plementation are more than 3 times faster than the execution times of the corresponding
routines of the OpenSSL project.
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1. Introduction

In the past years, the use of wireless communication devices has heavily increased. A large
number of handhelds, portables and mobile phones are sold every year and embedded
processors with wireless communication abilities are about to be built into automobiles,
refrigerators, TV sets, and microwave ovens. In the future, intelligent bar codes, wearable
computers, and sensor networks will be a part of every day life. Hence, very small com-
puter devices with wireless communication abilities will one day be embedded in almost
every product. As many of those small devices will be highly mobile, communication
will take place over decentralized and distributed networks with dynamically changing
topology, so called ad-hoc networks. This everytime, everywhere connectivity will offer a
broad range of new services.

However, in spite of the tempting advantages of such scenarios one must also consider
many new security threads imposed by them. Due to the decentralized nature of ad-hoc
networks, security requirements are different from those of traditional networks. Problems
are caused for example by the weak physical protection of the network nodes, the inherent
insecurity of the wireless communication channel, the mobility of the nodes and their lim-
ited processor and battery resources. Attackers may eavesdrop on communications, gain
unauthorized access to devices or simply disable them by excessive battery exhaustion.
Moreover, as John Doe will buy and use these devices, possibly without being even aware
of the security threads, it is up to the manufactures to develop products that provide a
sufficient level of security.

Several approaches to enhance the security in ad-hoc networks have been proposed.
Most of them are based on cryptographic primitives such as hash functions, message
authentication codes, encryption or digital signatures. However, many of them condemn
the use of asymmetric cryptography [21, 50] and refer to its high computational cost,
which can be a death blow on devices with low CPU power like mobile phones or personal
digital assistants.

In this thesis, we will examine the use of asymmetric cryptography in state-of-the-art
communication protocols for wireless ad-hoc networks. We will do this using a charging
protocol proposed by Lamparter, Paul, and Westhoff [30] as an example for such protocols.
A Sharp Zaurus personal digital assistent equipped with a 206MHz StrongARM CPU will
serve as a reference platform for typical devices in ad-hoc networks. Starting with the
determination of key sizes appropriate for this particular application, we will evaluate the
performance of different digital signature schemes in this ad-hoc network protocol. In
particular, we will not only determine which scheme allows the fastest execution times
for signature generation or verification on the reference platform, but we will introduce a
new measure to evaluate the performance within the protocol application.
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We will develop a speed-optimized implementation of the elliptic curve digital signature
algorithm (ECDSA) on the Sharp Zaurus reference platform. The implementation will
be integrated into the prototype for the charging protocol, which is currently developed
by Lamparter, Paul, and Westhoff. It will be based on general elliptic curves over binary
finite fields. Encouraged by the results of a performance evaluation of Koblitz curves on
a PalmOS device [64], we will also provide routines that are optimized for this special
group of elliptic curves.

The thesis is organized as follows.

Chapter 2 provides an overview over different types and applications of ad-hoc networks.
We discuss several security problems inherent to these networks and present existing
approaches to counteract the security threads.

Chapter 3 introduces the most commonly used digital signature schemes RSA, DSA and
ECDSA. Besides presenting the algorithms for key generation, signature generation and
signature verification, we describe the underlying computationally hard mathematical
problems together with known attacks against these schemes. We also provide a brief
performance comparison.

A brief description of the secure charging protocol and our discussion of the required
level of security can be found in Chapter 4. We also provide a careful analysis of the
performance of RSA and ECDSA when applied within the secure charging protocol.

Motivated by the results of our analysis, a brief introduction to elliptic curves is given
in Chapter 5. It is followed by a description of several methods for performing efficient
arithmetic on general elliptic curves over binary fields as well as on Koblitz curves. A list
of known attacks against elliptic curve cryptosystems completes the chapter.

Chapter 6 contains details about our implementation of ECDSA on the Sharp Za-
urus platform. In particular, we explain the software architecture and give reasons
for our design decisions. Besides describing how our routines are integrated into the
OpenSSL framework, we present our approaches to optimize the implementation. A de-
tailed overview of the execution times on the target platform can be found at the end of
this chapter.

In Chapter 7, we will refer to previous implementations of elliptic curve cryptosystems.
Chapter 8 contains a summary of this work and a discussion of the results. Finally,
manuals for our implementation and the tools we provide are given in the appendix.
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2. Security in Ad-hoc Networks

For establishing security, the special properties of wireless ad-hoc networks require new
approaches that differ significantly from mechanisms to secure classical networks with
fixed infrastructure. Reasons for this are the ability of nodes to move freely, enter or leave
the network at any time and the vulnerability of the wireless communication channel.

In this chapter, we explain what an ad-hoc network is, in which applications these types
of networks are used and which are the properties of typical devices participating in such
networks. Due to the dynamic structure of ad-hoc networks, the routing mechanisms differ
from classical mechanisms for fixed networks and offer a number of new vulnerabilities.
Therefore, we introduce two common routing protocols for such networks in Section 2.2.
We close this chapter with a discussion about several security issues related to ad-hoc
networks and give examples for approaches to remedy them.

2.1. Ad-hoc Networks

2.1.1. Types of Ad-hoc Networks

An ad-hoc network is a concept that has received attention in scientific research since
the 1970’s. Over the years, the field has developed and the applications are constantly
evolving. There seems to be no universally accepted definition of such networks [58]. The
term ad-hoc networks covers a wide range of different types of wireless networks with
different applications and different requirements concerning security. In the following, we
describe the two most important models between which one can distinguish [14].

The first system model is the mobile ad-hoc network (MANET) which is a collection of
wireless mobile nodes that do not require any fixed infrastructure or centralized adminis-
tration for communication. However, since the transmission range of each node is limited
to each other’s proximity, data for out-of-range nodes is routed through intermediate
nodes. The mobile nodes are not bound to any centralized control like base stations or
mobile switching centers. This offers unrestricted mobility and connectivity to the users,
but network management is now entirely up to the nodes that form the network. Each
node operates not only as host but also as router, since it may be necessary to forward
packets of other nodes in the network that may not be within direct wireless transmis-
sion range of each other. A MANET is formed instantaneously, and the mobile nodes
dynamically establish routing among themselves. This can be extremely useful in situa-
tions where geographical or terrestrial constraints demand a totally distributed, flexible
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network without any fixed infrastructure, such as battlefields, military applications, and
other emergency and disaster situations. A future application of wireless MANETs is for
example a sensor network, which consists of several thousand small low-powered nodes
with sensing and communication capabilities [32, 49]. One could, for example, imagine
a battlefield or disaster area where small sensors are dropped from a plane. The sensors
establish a wireless network, thereby bridge over areas without communication infrastruc-
ture and also gather information about the area. Another application of MANETs is the
scenario where a group of people meets in a conference room and wants to establish a
network among their personal digital assistants (PDAs) or portable computers.

The second system model is a wireless network with a fixed backbone. These networks
consist of a large number of mobile nodes and relatively fewer, but more powerful, fixed
nodes. A fixed node and a mobile one communicate via the wireless medium, but a
fixed permanent infrastructure is still required. In single-hop wireless networks mobile
nodes can only communicate directly with a fixed node and communication between two
mobile nodes is carried out via fixed nodes that are connected by a permanent link.
Examples for such networks are cellular phone systems. However, those networks have
some disadvantages. Mobile nodes that are not within range of a fixed node cannot
communicate at all even if they are close enough to other mobile nodes. Moreover nodes
may have to spend a lot of energy to reach the next fixed node just in order to communicate
with a node that is right next to them. Multi-hop wireless networks in which a node can
communicate directly with a fixed node, but also with other mobile nodes within the
range of the wireless link, can overcome these disadvantages. In [35] the authors show
that the throughput of multi-hop networks is superior to that of single-hop networks. A
similar architecture is described in [25]. Examples for such networks could be Internet
access points at airports or trade fairs, but also a household with a wireless access point
and several home appliances equipped with wireless communication interfaces.

2.1.2. Typical Devices

Purely mobile ad-hoc networks as well as ad-hoc networks with fixed backbone have in
common that the mobile nodes usually are heavily constrained devices. As the user wants
such devices to be cheap, small, lightweight and easy to handle (anytime, anywhere), they
are often battery-powered and have limited CPU power. The size of the available memory
is also limited. The wireless link is bandwidth-constrained and consumes a lot of battery
power, therefore the transmitting range is often not more than a few ten meters.

Due to these constraints communication protocols and software must be carefully de-
signed and implemented. The wireless communication channel and the limited resources
lead to a number of new security threads inherent to ad-hoc networks that must also
be taken care of. The constrained resources require optimized implementations with low
overhead that save CPU cycles and memory.
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2.2. Routing in Wireless Ad-hoc Networks

As mentioned before, ad-hoc networks offer a number of new vulnerabilities of which
some are caused by the different routing mechanisms employed in ad-hoc networks. The
special structure of these networks requires the routing mechanisms to be dynamic and
on-demand. Routes have to be adapted to the constantly changing network topology.
Moreover, routing is not only performed by special nodes, but by every member of the
network. Before we introduce the vulnerabilities of ad-hoc networks in the following
section, let us briefly present two commonly used routing protocols for ad-hoc networks,
namely DSR and AODV. This will allow the reader to better understand the cause of
some of the vulnerabilities mentioned in the remainder of this chapter.

2.2.1. Dynamic Source Routing Protocol (DSR)

DSR [23] is an on-demand source routing protocol. It is referred to as ”on-demand”
because route paths are discovered at the time a source sends a packet to a destination
for which the source has no path.
How is a route discovered? Suppose a node S wishes to communicate with a node D
but does not know any path to D. It initiates a route discovery by sending a route
request broadcast to its neighbors. This packet contains the destination address D. The
neighbors append their own address to the route request packet and rebroadcast it. The
process continues until the route request reaches D. D now sends back a route reply packet
to S to inform it about the discovered route. D may choose the reverse path (all nodes on
the path the route request packet traveled have been appended to the packet) or initiate
a new route discovery back to S. A source may receive multiple route replies from a
destination, because there may be many routes from S to D. These routes are cached for
future use.
What happens if a link breaks? When two nodes are no longer within transmission range,
the link is broken, and if an intermediate node detects such a link break when forwarding
a packet to the next node on a path, it will send a message to the source that the link is
broken. The source then tries one of the cached alternative paths or if it does not have
any alternatives, it will initiate another route discovery [39].

2.2.2. Ad-hoc On-demand Distance Vector Routing Protocol (AODV)

The AODV [13] protocol is a table-driven routing protocol and it is based on the classical
Bellman-Ford routing algorithm.
How is a route discovered? When a source node S wants to send a packet to a destination
D and does not already have a route, it broadcasts a route request packet across the
network. Nodes that receive this packet update their information for the source node and
their routing tables. If the node is either the destination S or knows a recent path to S, it
may send a route reply back to the source. Otherwise, the route request is rebroadcasted.
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As the route reply propagates back to the source, the nodes on the way update their
routing tables with the information about the route to D.
Routes are maintained as long as data packets are traveling periodically from the source
to the destination. Once the source stops sending packets, the link will time out and
eventually be deleted from the routing tables of the intermediate nodes. If a link break
is detected by an intermediate node, a route error message is propagated back to S. If it
still desires the route, it has to reinitiate a route discovery [1].
AODV typically minimizes the number of required broadcasts, i.e. nodes that are not
on a selected path do not maintain routing information or participate in routing table
exchanges [14].

2.3. Security

Due to the dynamically changing topology and infrastructureless, decentralized character-
istics, security is hard to achieve in mobile ad-hoc networks. Hence, security mechanisms
have to be a built-in feature for all sorts of ad-hoc network based applications. In this
section, we talk about the security objectives for designing applications, possible attacks
against ad-hoc networks and countermeasures that have already been proposed.

2.3.1. Security Goals

To secure a network, one usually considers the objectives availability, confidentiality,
integrity, authentication and non-repudiation [45, 61, 68, 62]. In this subsection, we shortly
explain the meaning of these terms.

Availability

Availability is a requirement that assures that systems work promptly and service is not
denied to authorized users. Attacks that affect availability are called denial of service
(DoS) attacks. In an ad-hoc network, denial of service attacks could be launched at
any layer. An adversary could employ jamming to interfere with communication on the
physical layer. On the network layer, an adversary could disrupt the routing protocol
and disconnect the network. An adversary could also bring down high-level services. By
massivly communicating with a node an attacker could prevent its victim from switching
to power save mode and thereby drain the victim’s battery.

Confidentiality

Confidentiality is the requirement that private or confidential information is not disclosed
to unauthorized entities. The transmission of sensitive information, such as strategic or
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tactical military information, but also information about financial transactions, requires
confidentiality. Not only the high-level information must remain confidential, but also
routing information is not to be disclosed, as it might be valuable to identify and locate
targets in a battlefield or to create an information profile of a particular user.

Integrity

Integrity is the property that data has not been altered in an unauthorized manner while
being transferred. To assure integrity, unauthorized manipulation must be detectable.
Due to the wireless communication interface a message in an ad-hoc network could be
corrupted by benign failures, such impairment of radio propagation, or because of mali-
cious attacks on the network. It is often not easy to distinguish between those two reasons
for altered data, therefore many countermeasures that work for fixed infrastructure net-
works (e.g. establishing a rating level for the trustworthiness of a node), cannot be easily
applied to ad-hoc wireless networks.

Authentication

Authentication enables a node to ensure the identity of the peer node it is communicating
with. When transmitting confidential data, it is important that the node that receives
the information is the one it is meant for. A node could for example masquerade as
another node and gain unauthorized access to resources and sensitive information. In
some applications of ad-hoc networks, such as portable communication devices or sensor
networks for battlefield situations, the device could be tampered with, so it might not only
be necessary to authenticate the device but also to make sure it has not been compromised.

Non-repudiation

Non-repudiation ensures that the originator of a message cannot deny having sent the
message. This goal is of particular importance in e-commerce applications or whenever
charging and billing is involved. Otherwise a user could for example order some product
or service, possibly make use of it, and deny that she has ordered or received it when
the provider wants to bill her. Non-repudiation is also useful for detecting compromised
nodes. When a node A receives an erroneous message from a node B, non-repudiation
allows A to accuse B using this message and thereby convince other nodes that B is
compromised.

2.3.2. Vulnerabilities of Ad-hoc Networks

Since there exists a broad range of applications for ad-hoc networks, the range of vulner-
abilities is also quite broad. In this subsection, we present some of the most important
vulnerabilities, which are mentioned in [14], although they are not all relevant for our
particular application.
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Weak physical protection

In classical network applications, the physical protection of a node is often quite well.
Servers or workstations are installed stationary in rooms that unauthorized persons cannot
enter.
In military applications, e.g. where soldiers are carrying mobile devices while fighting
on a battlefield or where small sensors are dropped from a plane, one can easily imagine
that mobile nodes are subject to capturing, compromising and hijacking. In such hostile
environments it is almost impossible to provide perfect physical protection.
Today, portable devices like mobile phones or PDAs are getting smaller and smaller. Such
a small device can be easily lost or stolen and misused by an adversary. Hence, we also
have to pay attention to this problem in civilian applications.
As a consequence the case of compromised devices should always be considered during
the design of an ad-hoc network system.

Constrained capabilities

As mentioned before, devices in ad-hoc networks have constrained capabilities concerning
CPU power, battery power and transmission bandwidth. These limited resources are
subject to denial of service attacks.
Denial of service attacks against CPU power and transmission bandwidth are well known
from classical networks. One or more adversaries flood a node with so many requests at
a time that the node cannot process them any more. As a result, benign users cannot be
served either.
In [60] Stajano and Anderson present a denial of service attack that makes use of the
limited battery power of ad-hoc networking devices. They call the attack sleep deprivation
torture. Most portable devices try to spend as much time as possible in sleep mode in
order to minimize energy consumption. In fact, the radio device and the CPU consume the
most power in modern devices, so they are turned on only once a while during sleep mode.
An attacker might communicate with a particular node in a legitimate way just to keep it
from going into sleep mode. The adversary thereby exhausts the victim’s batteries much
faster than usual. Finally, when it has run out of battery power, the victim is disabled.
So, this attack is more powerful than DoS attacks against CPU power or transmission
bandwidth, because the device is not only disabled for the time of the attack, but forever
(at least until the next battery change or recharge).

Required cooperative participation

The first applications that have been proposed for ad-hoc networks take place in military
or disastrous situations. In those cases all nodes usually belong to one authority and
have a common goal. However, in civilian applications one can no longer assume that
the nodes have a common goal. Moreover, users may act selfish and are not concerned
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about overall network performance. Therefore, recent research deals with the prevention
of non-cooperative behavior.
First of all, why is cooperation so important in multi-hop ad-hoc networks? To transmit
a message to a node B across the network, the originating node A often has to route it
via intermediate nodes, because the receiving node B is not within the transmission range
of A’s wireless interface. Hence, to keep the network functioning, the intermediate nodes
have to spend energy, CPU power and transmission bandwidth to forward other node’s
messages. But as mentioned before, energy, CPU power and transmission bandwidth are
limited resources for most devices in an ad-hoc network, so there is a trade-off between
cooperation and survival. At the same time, if a node does not forward foreign messages,
other nodes might not forward either and thereby deny service [10].

Weaknesses of the wireless medium

It is part of the nature of the wireless medium, that it is not an exclusive use medium. As
a consequence, possible attacks range from passive eavesdropping to active impersonation,
message replay and message distortion. Actively interfering attacks allow the adversary
to delete messages, to inject erroneous messages, to modify messages and to impersonate
as a node [68].

Attacks on the network layer

Due to the dynamically changing topology of ad-hoc networks (i.e. nodes join and leave,
disconnect temporarily and move around), routing has to be organized in a dynamic way.
This opens among others the following security vulnerabilities, which are mentioned, for
example, in [10, 14, 21].

1. Incorrect forwarding: As mentioned in the section about cooperation, a node
could, instead of following the routing protocol, deny forwarding packets. This
could also be done in a selective way, i.e. forward only a set of packets, maybe for a
particular group of nodes. Furthermore a node could modify other nodes’ answers
to route requests and influence the routing throughout the network.

2. Traffic deviation: A malicious node could falsely advertise very attractive routes
(for example, claim that the destination is only one hop away) and thereby convince
other nodes to route their messages via that malicious node. An attacker could use
this to collect information, influence network routes, and prevent some packets from
being transmitted.

3. Flooding with route updates: By sending route updates at short intervals an
adversary could overload the network. This is another kind of denial of service
attack.
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4. Black hole attack: This is a combination of traffic deviation and incorrect for-
warding. A node advertises falsely itself as having the shortest path to the node
whose packet it wants to intercept. Now many nodes route their packets to that
destination via the malicious node, because it seems to be the most efficient route.
The adversary now simply drops these packets.

5. Gray hole attack: In this special case of the black hole attack, the attacker
selectively drops some packets but not others. The adversary may, for example,
forward routing packets but not data packets. Alternatively, she may only forward
packets for certain destinations or from particular origins.

6. Wormhole attack: In [21], the authors introduce a new attack that involves a
pair of attackers that are linked via a private network connection. These malicious
nodes tunnel packets they receive from the network through their direct link and
rebroadcast them at the other end of the wormhole. This potentially disrupts routing
by short-circuiting the normal flow of routing packets and offers the possibility to
control a considerable amount of traffic.

2.3.3. Approaches to Establish Security in Ad-hoc Networks

Let us now present some approaches that have been proposed to counteract the security
threads of ad-hoc networks. There exists a broad range of problems from authentication
and key distribution, over secure routing, detection of misbehavior to motivating coop-
erative behavior. In the following, we give some examples for approaches to tackle these
problems.

Authentication and key distribution

� Resurrecting duckling: In [60] Stajano and Anderson present a mechanism to
authenticate users by imprinting. Analogous to a duckling that recognizes the first
moving subject it sees as its mother, the node accepts a symmetric encryption key
from the first device that sends such a key on a secure channel, e.g. by physi-
cal contact during the device initialization. The node may be imprinted several
times. After performing this kind of key exchange, an encrypted connection can be
established.

� Self-organized public key certificates: Public-key certificates issued, stored
and distributed by the users are part of a model proposed by Hubaux, Buttyán
and Čapcun [22]. In this model, each node keeps a small part of the certification
knowledge. By sharing this information, several certificate paths can be found.

� Localized certification services: Kong, Zerfos, Luo, Lu and Zhang [29] suggest
a public key infrastructure with certification authorities based on threshold secret
sharing. The secret shares are updated periodically. For providing certification
services K one-hop neighbors are needed within a given time window.
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� Asynchronous threshold security: Zhou and Haas [68] propose a key manage-
ment service based on threshold cryptography to distribute trust among a set of
special nodes. Cryptographic operations can only be performed jointly by t + 1
nodes, but are infeasible for t or less nodes, even by collusion. Furthermore, the
authors take advantage of inherent redundancies in ad-hoc networks due to mul-
tiple routes to enable diversity coding. The basic idea is to transmit redundant
information through additional routes for error detection and correction. Thereby
Byzantine failures given by several corrupted nodes or collusions can be tolerated.

Secure routing

� Secure Routing Protocol: Only assuming a security association between end-
points, Papadimitratos and Haas propose a routing protocol [50] that guarantees
a correct route discovery without the need of trusted intermediate nodes. Route
requests reach the destination along with a unique random query identifier. The
route request reply contains a message authentication code computed over the path.
The protocol is constructed such that compromised or replayed route requests will
never reach the source.

� ARIADNE: This secure on-demand routing protocol by Hu, Perrig, and Johnson
[21] prevents compromised nodes from disturbing uncompromised routes, i.e. routes
that consist of uncompromised nodes. It uses a key management protocol based on
one-way key chains called TESLA, which relies on loosely synchronized clocks. The
protocol is based on DSR (Section 2.2) and protects the routes with hash chains
and message authentication codes.

� SAODV: In [66], a security extension for AODV (Section 2.2) has been proposed
by Zapata. Its basic idea is that the source appends a digital signature and a keyed
hash chain on the control messages for route discovery. As the message traverses
the network, the intermediate nodes verify the signature and update the hash chain.
Thereby integrity, authentication and non-repudiation for source and destination are
provided.

Detection of attackers

� Intrusion detection: To suite the needs of wireless ad-hoc networks Zhang and
Lee [67] postulate that intrusion detection and response systems should be both
distributed and cooperative. With statistical anomaly detection on several network
layers every node watches for intrusions and a majority voting mechanism is used
to classify behavior by consensus. Possible responses to compromised nodes are
re-authentication or isolation.

� Watchdog and pathrater: For DSR, Marti, Giuli, Lai and Baker [39] introduce a
watchdog that detects denied packet forwarding and a pathrater that manages trust
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and routing policies. Misbehavior such as packet dropping is detected by utilizing
the promiscuous mode of the wireless interface, i.e. the ability of nodes to overhear
their neighbors’ communication. Successfully detected malicious nodes are avoided
in future routes, however, their outgoing data packets are still forwarded to the
destinations.

� CONFIDANT: This acronym stands for ’Cooperation Of Nodes, Fairness In Dy-
namic Ad-hoc NeTworks’ and has been proposed by Buchegger and Boudec [8, 9, 10].
This scheme detects malicious nodes by means of observation or reports about sev-
eral types of attacks. Nodes have a monitor for observations, reputation records
for first-hand and trusted second-hand observations, trust records to control trust
given to received warnings, and a path manager for nodes to adapt their behavior
according to reputation. Malicious nodes that have been detected are isolated from
the network.

Motivating cooperation

� Nuglets or Counters: As incentives for cooperation Buttyán and Hubaux [11]
propose so-called nuglets that serve as a per-hop payment in every packet or counters
[12] to encourage forwarding. Both nuglets and counters reside in a secure module
in each node, are incremented when nodes forward for others and decremented when
they send packets for themselves.

� Secure Charging Protocol: Lamparter, Paul, and Westhoff [30] propose a proto-
col that motivates intermediate nodes to forward packets by giving them a monetary
reward. At the same time, nodes are charged for sending or receiving data. The
envisioned ad-hoc network is not purely mobile, but it is an access network with
some fixed backbone that provides for example Internet or intranet access. The
protocol uses digital signatures and keyed hash chains. The certificate authority is
maintained by a network service provider that also manages charging and rewarding.
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3. Digital Signatures

One part of this work is the cryptographic analysis of the secure charging protocol. We
briefly mentioned in the last chapter, that it employs digital signatures. For this reason,
let us provide some information about the most common digital signature schemes before
starting the actual analysis.

The concept of a digital signature was introduced in 1976 by Diffie and Hellman [15, 16].
Digital Signatures have been designed in order to provide the digital counterpart to a
handwritten signature. Basically, a digital signature is a number that depends on some
secret only known to the signer (the signer’s secret key) and the content of the message to
be signed. The design goal is to make the signature verifiable, i.e. an unbiased third party
should be able to check, without knowing the secret of the signer, whether the message
has been indeed signed by a particular person. Such a verification may be necessary when
either the signer denies having signed the message (repudiation) or when an adversary
has faked a signature and claims that it is valid.

Figure 3.0.1 Illustration of digital signatures.
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Most digital signature schemes work as illustrated in Figure 3.0.1. Suppose Alice wants
to send Bob a digitally signed message. For the sake of simplicity, let us assume that
Bob already owns a copy of Alice’s public key and Alice owns the corresponding private
(secret) key. Moreover, we assume that Bob is sure that the key he owns is the public key
of Alice and not of somebody else.
In the first step of the signature scheme, Alice calculates a hash value of her message using
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some one-way hash function and converts it to an integer. A one-way hash function maps
a message of arbitrary size to a bit string of predefined length. An important property
of such a hash function is that it is collision resistant, i.e. it is computationally infeasi-
ble to find two distinct inputs that hash to the same output. In the following step, the
hash value is used together with Alice’s private key as input value for some mathematical
function. This step is called ’Encryption’ in Figure 3.0.1.
Now, Alice appends the output of this mathematical function, which is the digital signa-
ture of the original message, to her message and sends both to Bob.
Bob extracts the digital signature part from the received message and uses it as input
argument of some other mathematical function. Together with Alice’s public key as a
second input argument, Bob calculates an integer that should be equal to the value that
Alice used as input for her encryption function. This step is called ’Decryption’ in the
figure.
Bob uses the hash function on the message he received from Alice to calculate a hash
value. By comparing this hash value to the output of his decryption function, he can
detect whether the message has been altered.
If both values are equal, he knows that it has not been altered. Moreover, if Bob knows
for sure that the public key he used to verify the message belongs to Alice, he can also
be sure that Alice and not somebody else has sent the message, since only she owns the
corresponding private key.

In the following, we introduce the RSA, DSA and ECDSA signature schemes and discuss
their underlying mathematical problems and possible attacks.

3.1. The RSA Signature Scheme

The RSA signature scheme was discovered by Rivest, Shamir, and Adleman [51]. It
was the first practical signature scheme based on public-key techniques. The underlying
computationally hard mathematical problem for the RSA signature scheme is the integer
factorization problem (IFP)[41]:

Given a composite number n that is the product of two large prime numbers
p and q, find p and q.

Since it is part of the public key, an adversary has access to the modulus n. Once p
and q are computed, the system is broken and the attacker can use Algorithm 3.1.1 to
determine the secret key.

Algorithm 3.1.1 summarizes how a key pair, i.e. a public and the corresponding private
key, for the RSA signature scheme can be generated. The steps for signing a message are
given in Algorithm 3.1.2 and the steps for verifying a message can be found in Algorithm
3.1.3.
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Algorithm 3.1.1 Key generation for the RSA signature scheme [45]

OUTPUT: The public key (n, e) and the private key d.

1: Generate two large distinct random primes p and q, each roughly the same size.
2: Compute n = pq and φ = (p− 1)(q − 1).
3: Use the extended Euclidean algorithm to compute the unique integer d, 1 < d < φ,

such that ed ≡ 1 (mod φ).
4: The public key is (n, e); the private key is d.

Algorithm 3.1.2 RSA signature generation [45]

INPUT: The message m, the public key (n, e), and the private key d.
OUTPUT: The digital signature s.

1: Compute the hash value of the message m̃ = h(m), an integer in the range [0, n− 1].
2: Compute s = m̃d mod n.
3: The signature for m is s.

Algorithm 3.1.3 RSA signature verification [45]

INPUT: The message m, the public key (n, e) of the signer and the signature s on
m.

1: Compute m̃ = se mod n.
2: Verify that m̃ = h(m); if not, reject the signature.

In [41] the following attacks for the IFP are mentioned:

� Continued Fraction Algorithm: This algorithm is based on the idea of using
a factor base of primes and generating an associated set of linear equations whose
solution leads to a factorization. It could factor numbers of up to 133-bits.

� Quadratic Sieve Algorithm (QS): This algorithm is based on the same idea as
the continued fraction algorithm and can be easily parallelized to permit factoring
on distributed networks.

� General Number Field Sieve (NFS): Also based on the idea of the continued
fraction algorithm, the NFS is supposed to be the fastest known algorithm for
factoring integers having at least 400 bits.

� Elliptic Curve Factoring Method (ECM): This algorithm attempts to exploit
special features of an integer to be factorized. It tends to find small factors first.
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3.2. The Digital Signature Algorithm (DSA)

The Digital Signature Algorithm has been proposed in August of 1991 by the U.S. National
Institute of Standards and Technology (NIST). The underlying computationally hard
mathematical problem is the discrete logarithm problem (DLP)[41]:

Given a prime p, a generator α of Zp, and a non-zero element β ∈ Zp, find the
unique integer l, 0 ≤ l ≤ p− 2, such that β ≡ αl (mod p).

The integer l is called the discrete logarithm of β to the base α. If p is a prime number,
then Zp is a finite field denoted by the set of integers {0, 1, 2, . . . , p− 1}, where addition
and multiplication are performed modulo p. There exists a non-zero element α ∈ Zp such
that each non-zero element in Zp can be written as a power of α; such an element α is
called a generator of Zp.

Algorithm 3.2.1 summarizes how a key pair, i.e. a public and the corresponding private
key, for the DSA signature scheme can be generated. The steps for signing a message are
given in Algorithm 3.2.2 and the steps for verifying a message can be found in Algorithm
3.2.3.

Algorithm 3.2.1 Key generation for the DSA [45, 24]

OUTPUT: The public key (p, q, α, y) and the private key a.

1: Select a 160-bit prime q and a 1024-bit prime p with the property that q|p− 1.
2: Select a generator α of the unique cyclic group of order q in Z

∗
p, i.e. select an element

g ∈ Z
∗
p, compute α = g(p−1)/q mod p, and repeat this if α = 1.

3: Select a random integer a such that 1 ≤ a ≤ q − 1.
4: Compute y = αa mod p.
5: The public key is (p, q, α, y); the private key is a.

Algorithm 3.2.2 DSA signature generation [45]

INPUT: The message m, the public key (p, q, α, y), and the private key a.
OUTPUT: The digital signature (r, s).

1: Select a random integer k, 0 < k < q.
2: Compute r = (ak mod p) mod q.
3: Compute k−1 mod q.
4: Compute s = k−1{h(m) + ar} mod q, where h(m) is the hash value of the message

m.
5: The signature for m is (r, s).



3.3 The Elliptic Curve Digital Signature Algorithm (ECDSA) 17

Algorithm 3.2.3 DSA signature verification [45]

INPUT: The message m, the public key (p, q, α, y) of the signer and the signature (r, s)
on m.

1: Verify that 0 < r < q and 0 < s < q; if not, reject the signature.
2: Compute w = s−1 mod q and the hash value h(m).
3: Compute u1 = w · h(m) mod q and u2 = rw mod q.
4: Compute v = (αu1yu2 mod p) mod q.
5: Accept the signature if and only if v = r.

According to [41], there exist the following known attacks against DSA and the discrete
logarithm problem:

� Index Calculus Method: The fastest general-purpose algorithms known for solv-
ing the DLP are based on the index calculus method. In this method, a database
of small primes and their corresponding logarithms is constructed. Subsequently,
logarithms of arbitrary field elements can be easily obtained. This is reminiscent of
the factor base methods for integer factorization. If an improvement in the algo-
rithms for either the IFP or DLP is found, then shortly after this a similar improved
algorithm can be expected to be found for the other problem. The index calculus
method can be easily parallelized.

� Number Field Sieve Algorithm: This is the best current algorithm known for
the DLP and has precisely the same asymptotic running time as the corresponding
algorithm for factoring integers.

3.3. The Elliptic Curve Digital Signature Algorithm (ECDSA)

A variant of DSA based on elliptic curves is ECDSA. It was first proposed in 1992 by
Scott Vanstone [63]. The underlying computationally hard mathematical problem is the
Elliptic Curve Discrete Logarithm Problem (ECDLP)[41]:

Given an elliptic curve E defined over Fq, a point P ∈ E(Fq) of order n, and
a point Q ∈ E(Fq), determine the integer l, 0 ≤ l ≤ n− 1, such that Q = lP ,
provided that such an integer exists.

This discrete logarithm problem over elliptic curves is considered to be significantly harder
than the DLP over Zp, which is the mathematical basis for DSA. Therefore, the strength-
per-key-bit is substantially higher than in DSA and, hence, smaller parameters (keys) can
be used for elliptic curve cryptosystems to achieve equivalent levels of security.
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In order to facilitate interoperability, the domain parameters for ECDSA, which are
the parameters of the curve E, the underlying finite field Fq and a base point G ∈ E(Fq),
have to be negotiated and agreed upon by the communication partners. The curve is
usually determined by its two parameters a and b and the curve equation. For the finite
field F2m , the curve equation is given by the equation

y2 + xy = x3 + ax2 + b, (3.1)

which is the same for all m. The base point G is defined by its affine coordinates xG and
yG. Usually, the order n of the point G is also part of the domain parameters.

Algorithm 3.3.1 summarizes how a key pair, i.e. a public and the corresponding private
key, for the ECDSA signature scheme can be generated. The steps for signing a message
are given in Algorithm 3.3.2 and the steps for verifying a message can be found in Algo-
rithm 3.3.3. Signature generation and verification requires the computation of the hash
value of the message using the Secure Hash Algorithm (SHA-1) [45], which was proposed
by the U.S. National Institute for Standards and Technology (NIST).

Algorithm 3.3.1 Key generation for the ECDSA [24]

INPUT: The elliptic curve domain parameters.
OUTPUT: The public key Q and the private key d.

1: Select a random integer d in the interval [1, n− 1].
2: Compute Q = dG.
3: The public key is Q and the private key is d.

Algorithm 3.3.2 ECDSA signature generation [24]

INPUT: The message m, the elliptic curve domain parameters, the public key Q, and
the private key d.
OUTPUT: The digital signature (r, s).

1: Select a random integer k, 0 < k < n.
2: Compute kG = (x1, y1) and convert x1 to an integer.
3: Compute r = x1 mod n. If r = 0 then go to Step 1.
4: Compute k−1 mod n.
5: Compute SHA-1(m) and convert this bit string to an integer e.
6: Compute s = k−1(e + dr) mod n. If s = 0 then go to Step 1.
7: The signature for the message m is (r, s).
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Algorithm 3.3.3 ECDSA signature verification [24]

INPUT: The elliptic curve domain parameters, the message m, the public key Q of the
signer and the signature (r, s).

1: Verify that r and s are integers in the interval [1, n− 1]
2: Compute SHA-1(m) and convert this bit string to an integer e.
3: Compute w = s−1 mod n.
4: Compute u1 = ew mod n and u2 = rw mod n.
5: Compute X = u1G + u2Q.
6: If X = O, then reject the signature. Otherwise, convert the x-coordinate of X to an

integer x1, and compute v = x1 mod n.
7: Accept the signature if and only if v = r.

A discussion about possible attacks on elliptic curve cryptosystems and their level of
security can be found in Section 5.5.

3.4. Performance Comparison of RSA, DSA and ECDSA

Before comparing the performance of different signature schemes, i.e. the execution times
of the signature generation and signature verification, we have to agree which key sizes
provide a comparable level of security. This is necessary, because the computational
hardness of the underlying mathematical problems is different and some schemes need
smaller key sizes than others for achieving the same level of security.

In a Standards for Efficient Cryptography document [44] a list of elliptic curves with
different key sizes is given. The list also contains RSA / DSA key sizes that achieve
comparable levels of security. Table 3.4.1 contains these values.

Clearly, the key sizes for elliptic curves are significantly smaller than those for RSA /
DSA. Additionally, the key size does not increase as fast as the one of RSA / DSA. Figure
3.4.1 gives a good impression of this behavior. Hence, ECDSA has a major advantage for
designs that might need an increased level of security in the future.

Lenstra and Verheul present in their paper [33] a recommendation of key sizes for sym-
metric cryptosystems, RSA, and discrete logarithm based cryptosystems both over finite
fields and over groups of elliptic curves over prime fields. The authors formulate a model
that based on Moore’s law incorporates future changes of the available computational
power and the arising hardware costs. Their model also takes into account future progress
in cryptanalysis. Based on some hypotheses, e.g. that DES has been secure enough for
commercial applications until 1982, the authors come up with an equation that predicts
the computational load they consider to be infeasible until year y. The authors combine
their model with data points that evaluate the computational power necessary to break
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certain cryptosystems with certain key sizes. Finally, Lenstra and Verheul present a table
stating for each year until 2050 which minimum key size for which cryptosystem can be
considered to be secure until that year.

Figure 3.4.1 Size of the ECDSA key compared to the size of the RSA / DSA key
providing a similar level of security
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Lenstra and Verheul tend to recommend key sizes for elliptic curve cryptosystems that
are smaller than those in the standard document cited above. As it is dated before the
standard document and as the authors do not directly compare elliptic curve cryptosys-
tems over binary fields, we prefer to use Table 3.4.1 as basis.

In a whitepaper [40] from 1997, Certicom Corp. examines RSA and elliptic curve based
cryptosystems with respect to their security and efficiency. They point out that the best
known general-purpose algorithm for breaking RSA has a sub-exponential time complex-
ity whereas solving the elliptic curve discrete logarithm problem with the best general
algorithm has fully exponential time complexity. For increasing levels of security, the
gap between ECC key sizes and RSA key sizes dramatically increases. In terms of effi-
ciency, Certicom claims that ECC outperforms RSA with respect to computational over-
head, storage requirements, and bandwidth requirements. Their benchmarks are based
on 160-bit ECC and 1024-bit RSA. To their opinion implementations of elliptic curve
cryptosystems that are roughly 10 times faster than RSA can be realized. However, they
also concede that a short public exponent in RSA may lead to signature verification times
that are comparable with ECC.
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Table 3.4.1 SECG recommended elliptic curves over F2m [44]

Curve Name Curve Type Key Size equiv. RSA / DSA Key Size

sect113r1
sect113r2

random 113 512

sect131r1
sect131r2

random 131 704

sect163k1 Koblitz 163 1024
sect163r1
sect163r2

random 163 1024

sect193r1
sect193r2

random 193 1536

sect233k1 Koblitz 233 2240
sect233r1 random 233 2240

sect239k1 Koblitz 239 2304

sect283k1 Koblitz 283 3456
sect283r1 random 283 3456

In an RSA Laboratories Technical Note [52] from 1997, Robshaw and Yin analyze cryp-
tosystems based on RSA and on ECDSA. For ECDSA with a key size of 160 bits and
1024-bit RSA, which they found to achieve a comparable level of security, the authors
compare the performance of both schemes in terms of storage requirements and computa-
tional speed. While its short key size leads to clear advantages for ECDSA with respect
to storage requirements, their findings for the computational speed do not allow such a
clear statement. According to their benchmarks, the RSA sign operation is about 7 times
slower than the one of ECDSA, but the verify operation is more than 6 times faster. Rob-
shaw and Yin fear that elliptic curve cryptography might still offer some yet undiscovered
loopholes due to the complex mathematical theory behind it.

Another article [65] by Wiener published in RSA Laboratories’ CryptoByte newsletter
contains a comparison between 1024-bit RSA, 1024-bit DSA and 168-bit ECDSA. The
verification times of RSA are found to be more than 30 times faster than those of ECDSA.
The signature generation is measured to be around 8 times slower (see Table 3.4.2 for
the exact results). The author points out that the optimal choice of a signature scheme
depends on the particular application. Discussing several different applications for public-
key cryptosystems, he comes to the conclusion that RSA is well suited, for example,
for certificate-based systems that require only few signature generations but thousands
of signature verifications. However, in wireless communication scenarios Wiener favors
ECDSA as public-key algorithm, because the short key size and low signature overhead
save transmission bandwidth and lead to smaller silicon implementations.
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Table 3.4.2 Digital signature timings (milliseconds on a 200 MHz Pentium Pro) [65].

RSA-1024 DSA-1024 ECDSA-168
(e = 3) (over F168)

Sign 43 7 5
Verify 0.6 27 19
Key generation 1100 7 7

An evaluation of the performance of ECC in protocol applications can be found in [18].
Besides adding ECDSA support to OpenSSL (see also Section 7), the authors analyze the
performance influence of ECDSA and RSA on the SSL protocol. Their measures are the
Handshake Crypto Latency , which is essentially the sum of the times the client and the
server spend doing public key operations, and the Server Crypto Throughput , which is the
rate at which the server can perform the cryptographic operations. For a security level
of 1024-bit RSA, ECC performed more than five times better in terms of Server Crypto
Throughput. However, in terms of Handshake Crypto Latency, the performance depends
on the underlying scenario. For a PDA talking to a server, RSA beats ECC, while for
PDA talking to PDA or server talking to server, ECC is nearly twice as fast as RSA. In
experiments with a security level of 2048-bit RSA, ECC always outperformed RSA. For
this reason, the authors see a performance advantage for ECC at higher levels of security.

Obviously, the opinions about which digital signature scheme is the best are not clear.
However, most sources agree that RSA would be a good choice for systems in which sig-
nature verification dominates execution times and ECDSA for systems in which signature
generation dominates execution times.
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4. The Secure Charging Protocol (SCP)

Let us now take a more detailed look at one particular approach to enhance security in
ad-hoc networks. In [30], Lamparter, Paul, and Westhoff proposed a protocol for charging
support in multi-hop ad-hoc networks. The so-called Secure Charging Protocol employs
digital signatures as cryptographic tool to establish authentication, integrity, and non-
repudiation of charging information.

In this chapter, we point out the benefits of this protocol and describe the protocol
architecture. Afterwards, we analyze the protocol from a cryptanalytic point of view and
assess the required level of security as well as different digital signature schemes.

4.1. Underlying Scenario

First, let us summarize the scenario Lamparter et al. envisioned for their proposal:

The ad-hoc network is not purely mobile, but it is an access network with some fixed
backbone that provides for example Internet or intranet access (see also Section 2.1.1).
An access point (AP) forms the gateway between both networks. When a mobile node
(MN ) wants to communicate with a corresponding node (CN ) in the fixed network, the
AP may or may not be within transmission range. If it is not within range, the MN may
use intermediate nodes (Ni) in a hop-by-hop fashion to reach the access point. When the
corresponding node is within the ad-hoc network, AP can be bypassed and the CN can
be reached in multi-hop mode.

The proposed protocol does not handle colluding attacks, i.e. any attack for which the
mobile node MN or corresponding node CN and one or more intermediate nodes have to
cooperate shall not be prevented.

4.2. Benefits

The concept of multi-hop ad-hoc networks offers several advantages over single-hop net-
works. Nevertheless, there are also some problems to be solved before such networks
can be deployed. The protocol proposed by Lamparter, Paul, and Westhoff tackles the
following two difficulties.

On first sight, a network service provider (NSP) is not interested in deploying multi-
hop networks, because commonly users pay the NSP for providing the communication
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infrastructure. However, in a multi-hop network, users may communicate directly with
each other without using any infrastructure provided by the NSP. Obviously, the amount
of traffic that is transmitted via the infrastructure of the NSP is less in a multi-hop
network than in a single-hop network. Consequently, the main source of income of the
NSP is endangered by such network structures.

On the other hand, why should a node forward other nodes’ data packets? Mobile
devices have only limited battery power and they usually try to spend as much time as
possible in sleep mode in order to save energy. However, whenever the device has to com-
municate via its wireless interface, the power consumption rises dramatically. Forwarding
foreign traffic would obviously reduce the time such a device can spend in sleep mode,
simply because it has to transmit more data.

Lamparter, Paul, and Westhoff come up with an idea that solves both problems. They
suggest charging the nodes for any transmitted or received data packet, regardless whether
it is transmitted with or without using the infrastructure of the NSP. On the other hand,
the nodes that forward foreign traffic are given a monetary reward. If the ratio between
the charged and the rewarded amount of money is properly balanced, the NSP is able to
earn money even if its infrastructure is not used. In this case, the users pay the NSP for
providing certificate authority, network administration services and a reliably functioning
ad-hoc network. Thereby, the NSP is more likely to deploy such a network, because
the reduced number of necessary access points reduces spendings and billing of the users
increases income. At the same time, users are encouraged to participate in forwarding,
since this reduces their cost for transmitting information – of course with the disadvantage
of increased power consumption.

Motivating users to cooperate and share resources as Lamparter, Paul, and Westhoff
suggest is a striking approach to prevent dishonest passive behavior. This reduces the
need to detect and sanction non-cooperating nodes and allows detection schemes to focus
on the few actively malicious nodes.

4.3. Description

In the following, we present a shortened version of the description of the secure charging
protocol architecture as it is provided by the authors of [30]. Their paper contains further
details, in particular about authentication, charging and pricing.

When the MN joins the access network it first authenticates with the NSP. The MN
provides its credentials to the NSP, the NSP verifies the home domain of MN, and sends
back authorization information to MN.

At the source node MN :

1. Path finding : The MN uses some on-demand source routing protocol (see also Sec-
tion 2.2) to find the path MN, N1, N2, . . . , Nn, CN.



4.3 Description 25

2. Providing MN’s legal registration: MN sends the following security information along
with the data:

a) To secure originator, destination and hops: MN ’s digital signature on the route
MN, N1, N2, . . . , Nn, CN,

b) To initialize a hash chain: A keyed hash value on MN and CN,

c) To reveal key information: An identity certificate of MN to prove registration
to intermediate nodes.

At each intermediate node Ni:

1. Service provision: Ni checks the signature of MN. In case of a correct signature, Ni

can be sure that an authorized MN is willing to communicate.

2. Hash chain update: Ni computes the next value of the hash chain, i.e. the keyed
hash value of the received hash value using Ni’s key.

3. Packet forwarding : Ni forwards the packet to the next node on the route.

At the last intermediate node Nn (in addition to the previously mentioned usual procedure
at intermediate nodes):

1. Service provision confirmation: Nn acquires step-by-step a non-repudiative message
from CN, confirming the received amount of data.

2. Notification of AP : Nn (later on) notifies the AP about the involved forwarding
nodes and the service provision confirmation.

At the destination node CN :

The destination node CN signs the amount of data received from Nn.

At the access point AP :

Service provision verification: When it receives the hash chain and the service provision
confirmation, the AP verifies the participation of each node and books the reward/cost
to the accounts of the participating nodes.
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Figure 4.3.1 Network scenario for the Secure Charging Protocol
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4.4. Analysis of the Cryptographic Requirements

In their paper, Lamparter, Paul, and Westhoff proposed several cryptographic primitives
for their protocol. In this section, we have a closer look at the cryptographic requirements
of the protocol. The main design goals for the protocol are motivated by the constrained
capabilities of the target platform. In general, cryptographic operations are said to be
rather expensive with respect to execution time, which is in particular problematic due
to the constrained CPU power of a portable device. Therefore, one goal is to choose
cryptographic primitives that require only a small amount of CPU power. Another goal
is certainly to choose primitives that keep the protocol overhead as small as possible,
because the bandwidth of the wireless communication channel is also quite limited.

The cryptographic primitives proposed by Lamparter, Paul, and Westhoff in [30] for
the secure charging protocol are

� unkeyed hash SHA-1,

� keyed hash MD5-MAC,

� digital signatures based on elliptic curves (ECDSA).

The hash functions turn out to be rather cheap with respect to CPU time compared to the
digital signature operations. According to the OpenSSL speed program the computation
of MD5-MAC requires approximately 250 nanoseconds and the RSA verify operation
takes more than 10 milliseconds on an Intel Pentium II Workstation at 300MHz (factor
4 ·104). Therefore we will only consider different digital signature schemes in the following
argumentation and neglect the influence of the hash functions.
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4.4.1. Required Level of Security (Key Size)

A typical application scenario for the secure charging protocol is the provision of wireless
Internet access at an airport terminal or railway station. These places have in common
that the usual user does not stay longer than several hours at that place. Consequently,
most user certificates and with them private keys and public keys need only to be valid
for a short time, e.g. 24 hours. In case of longer stays, one could simply perform a key
exchange every 24 hours and provide fresh certificates.

The objective of someone who attacks the secure charging protocol is certainly to get
uncharged network access or to only collect the rewards without paying. However, the
amount of money involved can be expected to be rather low. Today’s (March 2003) prices
for wireless network access range from 3.75

�
per hour at the Munich airport [4] to 9

�

per hour at the CeBIT fair [20]. Thus, the financial harm of successfully breaking one
pair of keys is less than 200

�
. Consequently, one can expect that an attacker will not

spend a large amount of money to break a key. Note, that breaking a key of the secure
charging protocol can only be used to compromise the node to which the key belongs.
No secret information will be revealed; the attacker may forge only the secure charging
protocol signatures of the compromised node.

Using the results of the DES Challenge III [53] as a basis, we can determine the key
size for our purposes according to the recommendations of Lenstra and Verheul [33]. In
the DES Challenge III launched in January 1999 by RSA Data Security, Inc., a message
encrypted with the 56-bit DES algorithm has been broken within 22 hours and 15 minutes.
As explained above, keys that can be broken in approximately this amount of time still
provide enough security for our purposes. In their paper, Lenstra and Verheul offer
equations to adapt their recommendations to this level of security. Table 4.4.1 contains
these modified recommendations.

Table 4.4.1 Lower bound for RSA key sizes assuming that DES can be trusted until 1998
(as recommended by Lenstra and Verheul in [33]).

Year RSA Key Size

2003 744
2005 810
2010 990
2015 1191
2020 1416
2025 1664
2030 1937

However, we feel that these recommendations are too careful. So far, the largest RSA
Challenge Number that has been factored in RSA Security’s Factoring Challenge [43] is
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a 512-bit number. The factoring was finished in August 1999, took 3.7 months and the
CPU-effort is estimated to approximately 8000 MIPS years. We feel that this margin
of security would still be sufficient for our particular application. Lenstra and Verheul
recommend a minimum key size of 513 bits for RSA in the year 1986, so we obtained
the values in Table 4.4.2 by taking their recommendations for the year 1986 + x as guide
value for our implementation in the year 1999 + x. To our opinion this is still a correct
interpretation of their recommendations, simply with a different margin of security. Note,
that we do not claim that breaking cryptosystems that use the key sizes in Table 4.4.2
is infeasible. However, breaking such cryptosystems in less than 24 hours will require
an amount of computational resources that is disproportionate to the financial gain a
successful attacker might receive in our application.

Table 4.4.2 Lower bound for RSA key sizes based on the model of [33] and assuming
that 512-bit RSA provided a sufficient level of security until 1999.

Year RSA Key Size

1999 513
2003 622
2005 682
2010 844
2015 1028
2020 1235
2025 1464
2030 1717

Now that we have a guide for the RSA key sizes, we can use the table published in
the SEC standard document [44] to derive the corresponding ECDSA key sizes. Table
4.4.3 contains different key sizes listed in the standard document and the year until which
they prospectively provide sufficient security for the digital signature within the secure
charging protocol. Note, that these key sizes are based on the assumptions made in [33].
In particular, we cannot fully anticipate the effects of future progress in cryptanalysis.
The progress in this area should therefore be continously monitored and the key sizes
should be adapted when necessary.

In November 2002, Certicom announced that the ECCp-109 challenge has been solved
using a large network of 10,000 computers within 549 days [42]. This cryptosystem is
considerably weaker than an elliptic curve cryptosystem over a 113-bit binary field. Hence,
the level of security that the key sizes in Table 4.4.3 provide is probably still greater than
necessary for our application.
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Table 4.4.3 Overview of different key sizes for RSA and ECDSA together with the
estimated year until which they prospectively provide sufficient security for the secure
charging protocol (Note, that these recommendations are subject to future progress in
cryptanalysis).

Year RSA Key Size ECDSA Key Size (for curves over F2m)

1999 512 113
2006 704 131
2015 1024 163
2026 1536 193
2039 2240 233

4.4.2. Optimal Digital Signature Scheme

Having determined the required level of security, let us now evaluate which digital signa-
ture scheme is the best choice for the charging protocol. However, before we can start
comparing different signature schemes, we have to come up with a proper measure that
evaluates the performance of the schemes in a reasonable way. Previous performance com-
parisons suggest to compare, for example, the level of security per bit key size, the speed
for generating or verifying a signature [65] or the sizes of the actual signatures. Although
these measures may give a first hint for protocol designs, we feel that state-of-the-art
communication protocols require more sophisticated measures that take also into account
the individual features of the protocol. It is straightforward to see that the execution
times for signature verification are a lot shorter for RSA than for ECDSA. On the other
hand, the execution times for RSA signature generation are also a lot longer than those
of ECDSA. In applications where not only one but both types of operations are used on
the same platform, however, one has to come up with a different measure that takes into
account the execution times of both operations.

Nevertheless, let us begin with an examination of the influence of the signature schemes
RSA and ECDSA on the protocol data overhead. Afterwards, we will present our new
application-oriented measure and discuss the optimal choice with respect to this approach.

Optimal choice with respect to data overhead

Since the transmission bandwidth of the network is limited and nodes usually do not
want to waste too much energy for transmission, the amount of protocol data transmitted
should be kept as small as possible. The following sizes have direct influence on the
size of the packet transmitted from the mobile node MN to the corresponding node CN,
because as stated in Section 4.3, every packet carries MN ’s signature. Additionally, the
first packet in a stream of packets also contains MN ’s certificate:
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� the length of the signatures in the protocol header,

� the size of the keys in a node’s certificate, and

� the size of the signature in a node’s certificate

In order to estimate how big the influence of different signature schemes on the above
mentioned sizes is, we used the OpenSSL [3] programs rsagen, rsautl, req and x509 to
generate RSA signatures and RSA signed certificates with different key sizes (see Appendix
A.3 for detailed command line options). We also used a self-developed tool for generating
ECDSA signatures and ECDSA signed certificates. Figures 4.4.1, 4.4.2, and 4.4.3 for the
different behavior with respect to increasing key sizes. The values for the RSA scheme
have been obtained with key sizes that provide a comparable level of security as the
ECDSA key sizes. Keys, signatures and certificates are stored in files according to the
ASN.1 distinguished encoding rules (DER). Note, that the sizes of the certificates also
depend on other certificate fields such as the issuer or the subject. However, Figure 4.4.3
shall only give a notion about the relative behavior for increasing key sizes and not about
absolute certificate sizes.

Figure 4.4.1 Size of the private key file depending on the signature scheme
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Figure 4.4.2 Size of the signature file depending on the signature scheme
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Figure 4.4.3 Size of the certificate file depending on the signature scheme
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In all three figures, the size increases significantly with increasing key size for the RSA
signature scheme whereas the ascent is relatively moderate for the ECDSA signature
scheme. This fact is one of the major advantages of the ECDSA signature schemes. Since
according to Moore’s law computational power will grow exponentially in the next years,
one can expect that the recommended key size for the same level of security will also
increase in the future. Due to the moderate growth of the key, certificate and signature
sizes the ECDSA signature scheme can be easily adopted to newly recommended key sizes.
This means for example, that the space reserved for the signature in the protocol header
may be chosen to be smaller. This obviously reduces the protocol overhead.
Hence, from the data overhead point of view and with respect to future developments
ECDSA would clearly be the better choice for the secure charging protocol.

Optimal choice with respect to CPU time

Instead of using measures that reflect the overall network performance, for example the
time a packet needs to travel from the source to the destination, we want to focus on
an individual node and estimate the cost of the cryptographic operations. According to
the specification of the secure charging protocol, a node within the network may play
different roles in the communication process. It may, for example, be the mobile node in
one session, the first intermediate node in another session or the corresponding node in
again another session. For this reason, we suggest the following measure for evaluating
the performance of the signature scheme in our application:

CPU time an individual node involved in the communication process spends
on average for the signature operations necessary to process a single packet.

Note, that this measure does not determine the time a packet needs to travel from the
originator to the destination. Also, it does not reflect the total CPU time of all nodes
involved in a particular communication chain. For an average node in the network the
measure evaluates the CPU cost of the cryptographic operations. In mathematical terms,
the measure for a node x can be stated as follows:

tCPU(x) = Pr(x = MN) · tMN +

n∑

i=1

Pr(x = Ni) · tNi
+ Pr(x = CN) · tCN (4.1)

where Pr(·) denotes the probability of being the mobile node MN, an intermediate node
Ni or the corresponding node CN. The quantities tMN , tNi

, and tCN represent the CPU
time spent in those roles for the signature operations.

Note, that this measure cannot be used to determine the end-to-end traffic delay caused
by the protocol, because by some means such as multi-thread implementation the actual
delay can be reduced significantly.

As mentioned before, the usual device in a wireless network is constrained with respect
to battery power and CPU power. Obviously, reducing the number of CPU cycles spend



4.4 Analysis of the Cryptographic Requirements 33

for a task also saves battery power. The advantage of this measure over a simple com-
parison of execution times is that it takes into account the execution times for signature
generation and verification and weights them according to the probability of their occur-
rence for an average node. As we will see, estimations of the quantities in Equation (4.1)
can be easily determined on the basis of the protocol definition.

Table 4.4.4 Times for signature operations with different signature schemes on a
StrongARM CPU @ 206 MHz

Level of Security Time for Signature Time for Signature
(key size) Generation [ms] Verification [ms]

ECDSA RSA ECDSA RSA ECDSA RSA
113 bit 512 bit 2.8 13.7 7.5 1.3
131 bit 704 bit 3.8 32.4 11.5 2.5
163 bit 1024 bit 5.7 78.0 17.9 4.3
193 bit 1536 bit 7.6 251.9 26.0 9.7
233 bit 2240 bit 10.1 731.8 37.3 20.4

For our evaluation, we used the RSA implementation of the OpenSSL project [3] (de-
veloper snapshot 20021202) as an example for the RSA signature scheme. We created the
RSA keys and signatures with the OpenSSL crypto library functions. For the key gener-
ation, we used the same public exponent that the genrsa tool of the OpenSSL package
uses by default, namely 216 + 1 = 65537. The source for the ECDSA execution times is
our own implementation, which is also part of this work (see Chapter 6 for details). Table
4.4.4 contains the key sizes of comparable level of security, together with the execution
times of signature generation and signature verification on our StrongARM 206MHz.

In the following, we will consider two design scenarios for the charging protocol and
evaluate the performance of RSA and ECDSA by means of our proposed measure.

Scenario 1. In this scenario, the mobile node signs every packet it sends and each
intermediate node on the route verifies this signature. In their original protocol proposal,
the authors suggest not to sign and verify every packet. We will examine this in Scenario 2.

Let us begin our evaluation by summarizing for this scenario which signature operations
are performed by which node.

For every packet:

� The mobile node MN calculates a signature on the route.

� The first intermediate node N1 verifies MN ’s signature on the route.
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� The remaining intermediate nodes Ni (including the last intermediate node Nn)
verify MN ’s signature on the route.

After a bundle of b packets:

� The corresponding node CN signs the amount of data received.

� The last intermediate node Nn verifies CN ’s signature on the received amount of
data.

Considering that each communication within the network must involve all roles, it is
straightforward to obtain the probabilities of the different roles. We feel that it makes
sense to assume that it is equally likely for a network node to be the mobile node, some
intermediate node or the corresponding node. Hence, if we suppose that on average there
are n intermediate nodes between MN and CN, then the probability for a node x to play
a particular role is

Pr(x = MN) = Pr(x = CN) = Pr(x = Ni) = 1/(n + 2).

Now that we have the probabilities, the remaining quantities we have to determine in
order to evaluate our measure are the execution times of the signature operations per-
formed in the different roles. Looking at the protocol definition, we find these times to be:

� As mobile node MN:
tMN = ts for signing the route of every packet.

� As intermediate node Ni, but not Nn:
tNi

= tv for verifying MN ’s signature on the route of every packet.

� As last intermediate node Nn:
tNn

= 1
b
· tv + tv for verifying CN ’s signature on the amount of data received and for

verifying MN ’s signature on the route of every packet.

� As corresponding node CN:
tCN = 1

b
· ts for signing the amount of data received after a bundle of packets.

Thus, having determined all missing quantities of Equation (4.1), let us examine the
measure for this concrete scenario:

tCPU(x) =
ts

n + 2
+

n−1∑

i=1

tv
n + 2

+
1
b
· tv + tv

n + 2
+

1
b
· ts

n + 2
(4.2)
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After reordering the equation, we get:

tCPU(x) =
1

n + 2

(

ts

[

1 +
1

b

]

+ tv ·
[

n +
1

b

])

(4.3)

The corresponding node confirms the amount of data received after each bundle of b
packets. Lamparter, Paul, and Westhoff suggest b to be equal to 10. Hence, since 1/10 is
significantly smaller than 1 or n, let us simplify above equation by neglecting 1/b:

tCPU(x) =
1

n + 2
(ts + tv · n) (4.4)

As final step, we use the timings from Table 4.4.4 to evaluate the performance of our
ECDSA and RSA implementations. Figure 4.4.4 demonstrates the influence of the aver-
age route length on the performance of 163-bit ECDSA and 1024-bit RSA. For networks
in which the average number of hops between mobile node and corresponding node is
relatively small, ECDSA would be the better choice as the average CPU time per packet
is smaller. However, for networks with more than 5 hops, RSA yields better performance.
Obviously, as the number of hops grows, the probability of being some intermediate node
increases whereas the probability of being the mobile node MN decreases. Since the inter-
mediate nodes predominantly perform signature verifications and the source nodes only
perform signature generations, the signature verification time becomes more important
for large n. Consequently, RSA performs better than ECDSA in this case.

Figure 4.4.4 Influence of the network topology on the performance of ECDSA and RSA.
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Attentive readers will have noticed, that the performance gap between RSA and ECDSA
changes with increasing level of security. In fact, for low levels of security, e.g. 512-bit
RSA, the signature verification times of RSA are more than 5 times faster than the times
of ECDSA. However, for high levels of security, e.g. 2240-bit RSA, the RSA scheme is not
even twice as fast as the ECDSA scheme. For this reason, let us examine the performance
of both schemes for different levels of security with the following inequality:

tRSA
CPU(x) ≥ tECDSA

CPU (x) (4.5)
1

n + 2

(
tRSA
s ·+tRSA

v · n
)
≥ 1

n + 2

(
tECDSA
s + tECDSA

v · n
)

(4.6)

After some reordering we arrive at the following inequality:

n ≤ tRSA
s − tECDSA

s

tECDSA
v − tRSA

v

(4.7)

Figure 4.4.5 Optimal choice depending on the average route length and the required
level of security. The area below the curve covers situations in which ECDSA performs
better than RSA.
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Figure 4.4.5 demonstrates the value of this bound on n for different levels of security.
The area under the curve covers the situations when according to our measure ECDSA
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performs better than RSA and the area above the curve covers the situations when RSA
performs better. An analysis of co-operation approaches in multihop ad-hoc networks
[31] shows that, under the assumption of UDP traffic, such approaches only improve the
network performance for less than approximately n = 5 intermediate nodes. Hence, for
this scenario, RSA may be the better choice for our recommended 131-bit ECDSA level
of security and ECDSA will always be the better choice for levels of security greater than
163-bit ECDSA.

Scenario 2. In their protocol proposal, Lamparter, Paul and Westhoff come up with
several optimizations that reduce the computational cost caused by the digital signatures.
First of all, they demand only the first intermediate node to verify the signature on the
data packets. The remaining nodes may choose not to verify the signatures. Moreover,
the authors mention, that not every packet from mobile node to corresponding node has
to be signed, but that signing and verifying only the first packet belonging to a stream
of data packets would not deteriorate the security considerably. In this scenario, let us
presume that still every packet is signed by the mobile node, but only the first intermediate
node verifies the signature. It turns out that the other optimizations reduce the overall
computational cost caused by signature operations, but do not influence the measure for
choosing the best signature scheme. The reason for this is that signing only the first
packet of a stream reduces the number of sign operations and as only the signed packets
have to be verified, the number of verify operations decreases proportionally.

With these assumptions, the execution times for signature operations for the network
nodes are the following:

� As mobile node MN:
tMN = ts for signing the route of every packet.

� As first intermediate node N1:
tN1

= tv for verifying MN’s signature on the route of every packet.

� As last intermediate node Nn:
tNn

= 1
b
· tv for verifying CN’s signature on the amount of data received.

� As corresponding node CN:
tCN = 1

b
· ts for signing the amount of data received after a bundle of packets.

The influence of the new assumptions on our measure is the following:

tCPU(x) =
ts

n + 2
+

tv
n + 2

+
1
b
· tv

n + 2
+

1
b
· ts

n + 2
(4.8)
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With some reordering we get:

tCPU(x) =
1

n + 2

(

1 +
1

b

)

(ts + tv) (4.9)

Obviously, the weighting of the execution times for signature generation and signature
verification does no longer depend on the network structure, i.e. the average number
of intermediate hops between source and destination. Consequently, ECDSA is clearly
the best choice for this scenario, because the sum ts + tv for ECDSA is smaller than for
ECC independently of the desired level of security as presented in Table 4.4.4 (at least
for security levels equal or greater than 512-bit RSA security).

Conclusions

From the computational point of view, we recommend to use ECDSA as signature scheme
for the secure charging protocol. The reason for this recommendation is that ECDSA
outperformed RSA in above analysis of Scenario 2. The final implementation of the
secure charging protocol will certainly correspond to Scenario 2, since the developers of
the protocol want to keep the amount of computationally relatively expensive signature
operations as small as possible. Another argument for choosing ECDSA is the data
overhead, which is significantly smaller for ECDSA than for RSA and also increasing at
a much slower rater for higher levels of security.
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5. Elliptic Curve Cryptography

Motivated by the results of our analysis in the last chapter, let us provide the information
about elliptic curve cryptography that is necessary to develop a fast implementation
of ECDSA for the prototype implementation of the secure charging protocol. Before
presenting detailed algorithms and equations to perform arithmetic with points on elliptic
curves, we give a short explanation of finite fields. The description of elliptic curve
arithmetic focuses on elliptic curves over F2m and Koblitz curves. The last section of
this chapter contains a summary of known attacks against elliptic curve cryptosystems.
Moreover, we try to give the reader a notion about the security of such cryptosystems.

Note that more details about our implementation, in particular the algorithms used for
finite field arithmetic, can be found in the next chapter.

5.1. Introduction to Finite Fields

A finite field consists of a finite set of elements F , two binary operations, addition and
multiplication, and the additive and multiplicative inverses of each element. The binary
operations satisfy certain arithmetic properties. The number of elements in the field is
called the order of the finite field. There exists a finite field of order q if and only if q is a
prime power. Essentially, there is only one finite field of order q denoted by Fq. If q = pm

where p is a prime and m is a positive integer, then p is called the characteristic of Fq

and m is called the extension degree of Fq.

In the following, we shortly describe the two most important types of finite fields applied
in practice, the prime field Fp and the binary field F2m .

5.1.1. The Finite Field Fp

We call the finite field Fp where p is a prime number prime field. It is represented by
the set of integers {0, 1, 2, . . . , p− 1}. The addition operation is addition modulo p, which
means that for a, b ∈ Fp, a + b = r, where r is the remainder of a + b divided by p.
The multiplication operation is multiplication modulo p, which means that for a, b ∈ Fp,
a · b = s, where s is the remainder of a · b divided by p. If a is a non-zero element in Fp,
we say that the inverse of a modulo p, denoted by a−1, is the unique integer c ∈ Fq for
which a · c = 1.
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5.1.2. The Finite Field F2m

The finite field F2m can be viewed as a vector space of dimension m over the field F2

which consists of the two elements 0 and 1. F2m is often referred to as characteristic two
finite field or binary finite field. As it is a vector space, every element a of F2m can be
represented as a bit string (a0a1 . . . am−1):

a = a0 · β0 + a1 · β1 + · · ·+ am−1 · βm−1, where ai ∈ 0, 1.

The set {β0, β1, . . . , βm−1} is called a basis of F2m over F2. There are many different
bases and some of them lead to more efficient implementations than others. In this
thesis, we only consider polynomial basis representations, because they are well suited
to microprocessor architectures. Other bases are described, for example, in [24], which
is also our main reference for this section. An irreducible polynomial of degree m over
F2 can be written as f(x) = xm + fm−1x

m−1 + · · · + f2x
2 + f1x + f0, where fi ∈ {0, 1}.

Irreducible means that it cannot be factored as a product of two polynomials over F2, each
of degree less than m. These so-called reduction polynomials f(x) define a polynomial
basis representation of F2m, i.e.

F2m ' {am−1x
m−1 + · · ·+ a1x + a0 : ai ∈ {0, 1}}

' {(am−1 . . . a1a0) : ai ∈ {0, 1}}

Thus, the elements of F2m can be represented by the set of all binary strings of length
m. The multiplicative identity element is represented by the bit string (00 . . . 01) and the
additive identity element is represented by the bit string of all 0’s.
Addition is performed as bitwise XOR of the vector coefficients [6], i.e. if we have two ele-
ments of F2m , a = (am−1 . . . a1a0) and b = (bm−1 . . . b1b0), then a + b = c = (cm−1 . . . c1c0),
where ci = ai + bi mod 2.
If a = (am−1 . . . a1a0) and b = (bm−1 . . . b1b0) are elements of F2m multiplication is per-
formed as follows: a · b = r = (rm−1 . . . r1r0), where the polynomial r(x) = rm−1x

m−1 +
· · ·+ r1x + r0 is the remainder when the polynomial

(am−1x
m−1 + · · ·+ a1x + a0) · (bm−1x

m−1 + · · ·+ b1x + b0)

is divided by the reduction polynomial f(x).

5.2. Introduction to Elliptic Curves

In 1985, Miller [46] and Koblitz [27], independently proposed a public-key cryptosystem
analogous to the ElGamal schemes [17] in which the multiplicative group of integers
modulo p, denoted by Z

∗
p, is replaced by the group of points on an elliptic curve defined over

a finite field. Since the best algorithm known for solving the underlying computationally
hard mathematical problem, the elliptic curve discrete logarithm problem (ECDLP), takes
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fully exponential time, whereas the best algorithms known for solving the underlying
computationally hard mathematical problems in RSA (integer factorization problem) and
DSA (the discrete logarithm problem) take sub-exponential time, significantly smaller
parameters can be used in elliptic curve cryptography (ECC) than in other systems such
as RSA and DSA. For example, a 163-bit ECC key has a comparable level of security
(against known attacks) as RSA and DSA with a modulus of 1024 bits [36]. This means by
using ECC one can reach the same level of security with less expense of processing power,
storage space, bandwidth and electrical power, which makes it especially interesting for
applications on constrained devices such as smartcards, mobile phones and handhelds.

The performance of ECC depends mainly on the efficiency of finite field computations
and fast algorithms for elliptic scalar multiplications. Selecting particular underlying
fields and/or elliptic curves also speeds up the implementation. In Section 5.1, we already
gave examples of such finite fields. Examples of families of curves that offer computational
advantages are Koblitz curves over F2m .

Let us now introduce the mathematical definition of the elliptic curves we will work
with in the following. Suppose we have a finite field F2m . Then, the polynomial equation

E : y2 + xy = x3 + ax2 + b, (5.1)

with coefficients a, b ∈ F2m together with the point at infinity O define an elliptic curve
over F2m . Let us ask for solutions (x, y) with x, y ∈ F2m . Such a solution is called point
on the elliptic curve E.

5.3. Arithmetic on General Elliptic Curves over F2m

The elliptic curve digital signature algorithm (ECDSA, see Section 3.3 for details) is based
on multiplying a point P on an elliptic curve with a scalar k. This is the nothing else than
a k-fold addition of P . Hence, addition and scalar multiplication of points are important
arithmetic operations, which for this reason will be described in the following.

5.3.1. Point Addition

There is an illustrative way to explain the law for adding two points on an elliptic curve.
Let us assume that the coefficients of our elliptic curve E as well as x and y are rational
numbers. Then, we can certainly draw the curve E which is the set of all solutions (x, y)
of Equation (5.1).

Starting with two distinct rational points P and Q on E, we draw a line through P
and Q and obtain a third point of intersection of the line with the curve. Reflecting this
point in the x-axis, we obtain a point R, which we define to be the result of adding P +Q
(see Figure 5.3.1). Since the line, the curve and the points of intersection are rational, R
must also be rational.
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Figure 5.3.1 Adding two points on an elliptic curve [24].

Even if we only have one rational point P , we can still generally get another one by
drawing the tangent line to the curve at P . This line will intersect with another point on
the curve. If we then reflect this point in the x-axis we obtain the point R = 2P , which
will also be rational (see Figure 5.3.2).

Figure 5.3.2 Doubling a point on an elliptic curve [24].

One can show that together with a zero element O, these operations form a group. Let
us agree on the convention that the points on our elliptic curve consist of the ordinary
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points in the ordinary affine x-y-plane together with a point O at infinity. We will call
this point point at infinity.

Addition using affine coordinates

Let us assume that P1 = (x1, y1) and P2 = (x2, y2) with O 6= P1 6= −P2 6= O are
two distinct points on the curve E given by Equation (5.1). Based on the previously
mentioned geometric motivation one can derive the following formulas [19] for computing
the coordinates of the point P3 = P1 + P2 = (x3, y3). Note that we are in F2m , i.e.
a, b, xi, yi ∈ F2m :

λ =

{ y1+y2

x1+x2
if P1 6= P2

y1

x1
+ x1 if P1 = P2

x3 = λ2 + λ + x1 + x2 + a
y3 = (x1 + x3)λ + x3 + y1

(5.2)

The solutions for the two trivial cases Pj = O and P1 = −P2, which we have excluded
above, are straightforward, namely Pi +O = Pi and P1 + (−P2) = O, respectively.

In order to estimate and compare the computational cost of the following algorithms,
which will use above equations to add two points in affine coordinates, let us examine
the equations with respect to the required number of field operations. Obviously, the
formulas require 1 field division and 1 field multiplication. The computational cost of
field additions and squarings can be neglected, since they can be done much faster than
inversion or multiplication (see Table 6.3.1 in Section 6.3.3 for concrete execution times
on our target platform).

Addition using projective coordinates / mixed coordinates

As inversion in F2m is computationally expensive relative to multiplication, it turns out
that representing a point using projective coordinates might be advantageous. There exist
several types of projective coordinates. In standard projective coordinates one finds that
the projective point (X, Y, Z), Z 6= 0 corresponds to the affine point (x, y) = (X/Z, Y/Z).
Then, the projective equation of the elliptic curve is Y 2Z + XY Z = X3 + aX2Z + bZ3.

In [37] a different set of projective coordinates is introduced that leads to computation-
ally fast point arithmetic. The underlying map is the following

{(X, Y, Z) : Z 6= 0} 7−→
{

(x, y) =

(
X

Z
,

Y

Z2

)}

{(X, Y, 0)} 7−→ O

and

{(x, y)} 7−→ {(X, Y, Z) = (x, y, 1)}
O 7−→ {(α1, α2, 0), for any αi}
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The projective equation of the elliptic curve is

Y 2 + XY Z = X3Z + aX2Z2 + bZ4. (5.3)

The addition of two points using mixed coordinates, i.e. one point given in affine coordi-
nates and the other in projective coordinates, is especially of use in point multiplication
methods presented later in this thesis. Here are the computation steps for a projective
point P1 = (X1, Y1, Z1) and an affine point P2 = (x2, y2) in the non-trivial case with
O 6= P1 6= −P2 6= O. The result is the projective point P3 = P1 + P2 = (X3, Y3, Z3).

A = y2 · Z2
1 + Y1 B = x2 · Z1 + X1 C = Z1 ·B

D = B2 · (C + aZ2
1) Z3 = C2 E = A · C

X3 = A2 + D + E F = X3 + x2 · Z3 G = X3 + y2 · Z3

Y3 = E · F + Z3 ·G
(5.4)

This operation requires 10 field multiplications, which on most platforms is faster than
addition in affine coordinates (1 field multiplication plus 1 field division). On our Sharp
Zaurus platform, the execution times are 121 � s vs. 158 � s (Table 6.4.1).

Doubling a projective point, i.e. calculating P3 = P1 + P1, can be done using the
following formulas:

Z3 = X2
1 · Z2

1

X3 = X4
1 + b · Z4

1

Y3 = bZ4
1 · Z3 + X3 · (aZ3 + Y 2

1 + bZ4
1)

(5.5)

This operation requires 5 field multiplications.

5.3.2. Scalar Point Multiplication

The computation of kP , where k is an integer and P is an elliptic curve point, is the
basic operation of cryptographic schemes based on elliptic curves. It also dominates the
execution time of those schemes. Thus, using efficient algorithms for point multiplication
has a strong influence on the performance of elliptic curve cryptosystems. [19] presents a
good overview over fast multiplication algorithms. In the following, we will describe the
algorithms we implemented.

Binary method

The simplest method for multiplying kP is based on the repeated-square-and-multiply
method for exponentiation. Algorithm 5.3.1 shows how it works.
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Algorithm 5.3.1 Left-to-right binary method for point multiplication [19].

INPUT: k = (km−1, . . . , k1, k0)2, P ∈ F2m .
OUTPUT: kP .

1: Q←− O.
2: for i = m− 1 downto 0 do
3: Q←− 2Q.
4: if ki = 1 then
5: Q←− Q + P .
6: return Q.

P is usually given in affine coordinates. In order to minimize the number of computa-
tionally expensive field inversions, we store Q in projective coordinates. The doubling in
Step 3 is done as in Equations (5.5). For the addition in Step 5, we use Equations (5.4)
to add P in affine coordinates to Q in projective coordinates.

Assuming that the average number of ones in the binary representation of k is m/2
and neglecting the fact that the very first point doubling is simply a doubling of O, the
algorithm requires approximately m point doublings and m/2 point additions. Using
the computational complexity in terms of finite field operations derived for the point
addition methods, we can also express the complexity of this multiplication method in
terms of field multiplications and field divisions. The expected number of multiplications
is (5m + 10 · (m/2)) = 10m. Another multiplication and division is necessary to convert
the result back to affine coordinates.

NAF and width-w NAF methods

The binary method can be sped up by using a different representation for k [59], the
so-called nonadjacent form (NAF). This is a signed binary expansion with the property
that no two consecutive coefficients are nonzero. For example,

NAF(29) = (1, 0, 0,−1, 0, 1)

since 29 = 32− 4 + 1. Every positive integer has a unique NAF. The NAF has the fewest
nonzero coefficients of any signed binary expansion and it is at most one coefficient longer
than the binary representation [48].

The NAF can be generalized to the so-called width-w NAF that additionally increases
execution speed. For any w > 1, each positive integer has a unique width-w NAF, denoted
by NAFw(n):

n =

l−1∑

j=0

uj2
j
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where each uj is odd, |uj| < 2w−1 and among any w consecutive coefficients at most one
is nonzero. Algorithm 5.3.2 shows how NAFw(n) can be computed.
In Step 4 of Algorithm 5.3.2, the expression ”k mods 2w” denotes the integer u satisfying
u ≡ k (mod 2w) and −2w−1 ≤ u < 2w−1. The actual implementation of Step 4 involves
some binary-bit arithmetic. The idea behind it is that k mods 2w is a signed integer
representation of the rightmost w bits. Therefore, we just isolate the rightmost w bits,
extend the sign to a 32-bit value and get u as the result. Note that the subtraction in
Step 5 is not a simple XOR-operation, but a long integer subtraction with borrow.

Algorithm 5.3.2 Computing the width-w NAF of a positive integer [19].

INPUT: A positive integer k.
OUTPUT: NAFw(k).

1: i←− 0.
2: while k ≥ 1 do
3: if k is odd then
4: ki ←− k mods 2w.
5: k ←− k − ki.
6: else
7: ki ←− 0.
8: k ←− k � 1.
9: i←− i + 1.

10: return (ki−1, ki−2, . . . , k1, k0).

Algorithm 5.3.3 finally illustrates how point multiplication is done using the width-
w NAF. For the point subtraction in Step 9, we use the fact that if P = (x, y) then
−P = (x, x + y). After performing this operation the remaining addition is again done
according to Equations (5.4).

Algorithm 5.3.3 Window NAF method for point multiplication [19].

INPUT: Window width w, NAFw(k) =
∑l−1

i=0 ki · 2i, P ∈ E(F2m).
OUTPUT: kP .

1: Precompute Pi = iP , for i ∈ {1, 3, 5, . . . , 2w−1 − 1}.
2: Q←− O.
3: for i = l − 1 downto 0 do
4: Q←− 2Q.
5: if ki 6= 0 then
6: if ki > 0 then
7: Q←− Q + Pki

8: else
9: Q←− Q− Pki

10: return Q.
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Using affine coordinates the precomputation requires 2w−2 − 1 point additions and 1
point doubling. This equals 2w−2 field divisions and field multiplications. The average
number of non-zero coefficients of the width-w NAF is approximately 1/(w + 1). Hence,
the main computation takes m point doublings and m/(w + 1) point additions in mixed
coordinates. This corresponds to 5m + 10m/(w + 1) field multiplications.

In case the same elliptic curve point P is multiplied with different integers k, the product
kP can be computed faster by performing the precomputation in Step 1 only once for the
point P and reusing the precomputed values for subsequent multiplications. The resulting
method is called fixed-base window NAF method.

Montgomery method

The Montgomery Method presented in [38] is based on the following idea by Montgomery
[47]: Suppose we have two points Q1 = (x1, y1) and Q2 = (x2, y2) in affine coordinates
with Q1 6= ±Q2. Let Q1 + Q2 = (x3, y3) and Q1 − Q2 = (x4, y4). Using the addition
formulas 5.2 we get

x3 = x4 +
x1

x1 + x2
+

(
x1

x1 + x2

)2

. (5.6)

The x-coordinate of Q1 + Q2 can be computed from the x-coordinates of Q1, Q2 and
Q1−Q2. Iteration j of Algorithm 5.3.4 computes Tj = (lP, (l+1)P ), where l is the integer
given by the j leftmost bits of k. Then Tj+1 = (2lP, (2l + 1)P ) or ((2l + 1)P, (2l + 2)P )
if the (j + 1)st leftmost bit of k is 0 or 1, respectively. After the last iteration, having
computed the x-coordinates of kP = (x1, y1) and (k + 1)P = (x2, y2), the y-coordinate
can be recovered as:

y1 = x−1(x1 + x)[(x1 + x)(x2 + x) + x2 + y] + y. (5.7)

We derived this equation using the addition formula 5.2 for computing the x-coordinate
x2 of (k + 1)P from kP = (x1, y1) and P = (x, y). See Algorithm 5.3.4 for details.

Algorithm 5.3.4 Montgomery method for point multiplication [19].

INPUT: k = (ks−1, . . . , k1, k0)2 with ks−1 = 1, P ∈ E(F2m).
OUTPUT: kP .

1: X1 ←− x, Z1 ←− 1, X2 ←− x4 + b, Z2 ←− x2.{Compute (P, 2P ).}
2: for i = s− 2 downto 0 do
3: if ki = 1 then
4: T ←− Z1, Z1 ←− (X1Z2 + X2Z1)

2, X1 ←− xZ1 + X1X2TZ2.
5: T ←− X2, X2 ←− X4

2 + bZ4
2 , Z2 ←− T 2Z2

2 .
6: else
7: T ←− Z2, Z2 ←− (X1Z2 + X2Z1)

2, X2 ←− xZ2 + X1X2TZ1.
8: T ←− X1, X1 ←− X4

1 + bZ4
1 , Z1 ←− T 2Z2

1 .
9: x3 ←− X1/Z1.
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10: y3 ←− (x + X1/Z1)[(X1 + xZ1)(X2 + xZ2) + (x2 + y)Z1Z2](xZ1Z2)
−1 + y.

11: return (x3, y3).

The loop in Algorithm 5.3.4 takes 6m field multiplications and Steps 9 and 10 sum up
to 7 field multiplications and 2 field divisions.

Comb method

In the comb method, proposed in [34], the basic idea is to write the binary representation
of the scalar k in w rows and to process the columns of the resulting rectangle one column
at a time.

Algorithm 5.3.5 Comb method for point multiplication [19]

INPUT: Window width w, d = ds/we, k = (ks−1, . . . , k1, k0)2, P ∈ E(F2m).
OUTPUT: kP .

1: Precompute Pn =
∑w−1

i=0 ni2
i·dP for 0 ≤ n < 2w, where nj is bit j in the binary

representation of n = (nw−1, . . . , n0)2 (see Algorithm 6.4.1).
2: By padding k on the left with 0’s if necessary, write k = Kw−1‖ . . . ‖K1‖K0, where

each Kj is bit string of length d. Let Kj
i denote the ith bit of Kj.

3: Q←− O.
4: for i = d− 1 downto 0 do
5: Q←− 2Q.
6: Q←− Q + P(Kw−1

i
,...,K1

i
,K0

i
)2

.
7: return Q.

Similar to the window NAF method, there is also a variant of this method for fixed
points P , which performs the precomputation in Step 1 only once. This variant is called
fixed-base comb method. Neglecting the computational steps for the precomputation, the
calculation of kP requires d point doublings in projective coordinates and d point additions
in mixed coordinates. The sum of field multiplications is (5+10)d = 15d ≈ 15m

32w
. However,

this requires memory for the storage of 2w − 1 precomputed elliptic curve points, which
might be a serious disadvantage on some constrained devices.

Table 5.3.1 summarizes the complexity of the above mentioned multiplication methods
for points on general elliptic curves over F2m . Obviously, the Montgomery method yields
the best performance among all methods for arbitrary points, whereas the fixed-base comb
method is the best choice among all fixed-base methods.
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Table 5.3.1 Estimated computational complexity of different multiplication methods in
terms of finite field operations.

Multiplication Method Number of Number of
Field Multiplications Field Divisions

Arbitrary Point Methods
Binary Method 10m -
Montgomery Method 6m + 7 2
Window NAF Method 2w−2 + 5m + 10m/(w + 1) 2w−2

Fixed Point Methods
Fixed-base Window NAF Method 5m + 10m/(w + 1) -
Fixed-base Comb Method (15/32)m/w -

5.4. Arithmetic on Koblitz Elliptic Curves

In 1991, Koblitz presented a paper [28] in which he examines a subclass of binary ellip-
tic curves with properties that allow for the use of efficient algorithms for scalar point
multiplication. This type of curves is called Koblitz curve and they are defined by the
equation

Ea : y2 + xy = x3 + ax2 + 1, (5.8)

where a ∈ F2, i.e. a ∈ {0, 1}. Obviously, the difference between general binary elliptic
curves and Koblitz curves is that the choice for the coefficients in the defining equation is
limited to the set {0, 1}. Koblitz discovered interesting properties of these curves that can
be used to compute the point multiplication more efficiently. In this section, we introduce
some of the theory that was summarized by Solinas in [59].

5.4.1. Basic Properties

The coefficients of Koblitz curves are either 0 or 1. Koblitz curves have the property that
if P = (x, y) is a point on Ea then so is the point (x2, y2) [59]. Hence, one finds

(x4, y4) + 2(x, y) = µ · (x2, y2) (5.9)

for every point (x, y) on the curve Ea, where µ := (−1)1−a.

Using the Frobenius map τ(x, y) := (x2, y2), τ(O) := O this can be written symbolically

(τ 2 + 2)P = µτP, (5.10)

where P is some point on the Koblitz curve.



50 Elliptic Curve Cryptography

Note that the Frobenius map is a very cheap operation from the computational point
of view. It only requires squaring the point coordinates and this can be done in only a
fraction of the time a field multiplication or division takes (see Section 6.3.1 for details).

The Frobenius map can be regarded as the complex number τ satisfying τ 2 + 2 = µτ ,

namely τ = µ+
√
−7

2
. We can now represent the scalar k in our point multiplication

operation as an element of the ring Z[τ ]: k =
∑l−1

i=0 uiτ
i. Consequently, we can multiply

points on the Koblitz curve by such an element

kP = (ul−1τ
l−1 + · · ·+ u1τ + u0)P = ul−1τ

l−1(P ) + · · ·+ u1τ(P ) + u0P (5.11)

Efficient point multiplication methods can now be developed by finding a nice represen-
tation k =

∑l−1
i=0 uiτ

i where l is relatively small and the coefficients ui are small and
sparse.

Before describing the multiplication algorithms, let us introduce the so-called Lucas
sequences as we will need them later in this section. They are defined as follows:

U0 = 0, U1 = 1 and Uk+1 = µUk − 2Uk−1 for k ≥ 1;
V0 = 2, V1 = µ and Vk+1 = µVk − 2Vk−1 for k ≥ 1.

(5.12)

Tables 5.4.1 summarizes some important definitions and relations for Koblitz curves,
which we will need in the following.

Table 5.4.1 Important definitions and relations for Koblitz curves.

Definition
µ := (−1)1−a

τ(x, y) := (x2, y2)

Relation

f =

{
2 for a = 1
4 for a = 0

τ 2 + 2 = µτ
U0 = 0, U1 = 1 and Uk+1 = µUk − 2Uk−1 for k ≥ 1
V0 = 2, V1 = µ and Vk+1 = µVk − 2Vk−1 for k ≥ 1

5.4.2. Point Multiplication

τ-addic NAF (TNAF) multiplication method

Using the fact that τ 2+2 = µτ , one can show that every element in Z[τ ] can be expressed in
canonical form r0+r1τ . Algorithm 5.4.1 takes an element κ in this representation as input
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and calculates its so-called τ -addic NAF (TNAF) κ =
∑l−1

i=0 uiτ
i. In this representation

the coefficients ui are either 0 or ±1, and no two consecutive coefficients ui are nonzero.
Note, that this algorithm involves multi-precision integer arithmetic.

Algorithm 5.4.1 Computing the τ -addic NAF of an element in Z[τ ][19]

INPUT: κ = r0 + r1τ ∈ Z[τ ].
OUTPUT: TNAF(κ).

1: i←− 0.
2: while r0 6= 0 OR r1 6= 0 do
3: if r0 is odd then
4: ui ←− 2− (r0 − 2r1 mod 4).
5: r0 ←− r0 − ui.
6: else
7: ui ←− 0.
8: t←− r0/2.
9: r0 ←− r1 + µt.

10: r1 ←− −t.
11: i←− i + 1.
12: return (ui−1, ui−2, . . . , u1, u0).

Each κ ∈ Z[τ ] has a unique τ -addic NAF. For example for a = 1, we find

TNAF(9) = (1, 0,−1, 0, 0, 1),

since we can write 9 = τ 5−τ 3 +1. However, it turns out that the length of such a τ -addic
NAF is approximately l(k) ≈ 2 log2 k and therefore twice as long as the length of the
normal NAF (introduced in Section 5.3.2).

The solution to this problem is an additional modular reduction step ρ = κ mod ((τm−
1)/(τ − 1)), which is similar to the modular reduction of integers. In this formula, the
variable m is the m in F2m . Algorithm 5.4.2 shows how this modular reduction step can
be done in an efficient way. Note, that we do not exactly compute the modular reduction,
but an approximation, the so-called partial modular reduction ρ′ = κ partmod ((τm −
1)/(τ − 1)).

Algorithm 5.4.2 Computation of the partial modular reduction of an element in Z[τ ]
[19]

INPUT: An integer k, 0 < k < n, C ≥ 2, the Lucas sequence Vm,

and s0, s1, where si = (−1)i

f
(1− µUm+3−a−i).

OUTPUT: ρ′ = k partmod ((τm − 1)/(τ − 1)).

1: k′ ←− bk/2a−C+(m−9)/2c.
2: for i = 0 to 1 do
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3: g′ ←− si · k′.
4: j ′ ←− Vm · bg′/2mc.
5: λi ←− round

(
(g′ + j ′)/2(m+5)/2

)
/2C .

6: fi ←− round (λi).
7: ηi ←− λi − fi.
8: hi ←− 0.
9: η ←− 2η0 + µη1.

10: if η ≥ 1 then
11: if η0 − 3µη1 < −1 then
12: h1 ←− µ.
13: else
14: h0 ←− 1.
15: else
16: if η0 + 4µη1 ≥ 2 then
17: h1 ←− µ.
18: if η < −1 then
19: if η0 − 3µη1 ≥ 1 then
20: h1 ←− −µ.
21: else
22: h0 ←− −1.
23: else
24: if η0 + 4µη1 < −2 then
25: h1 ←− −µ.
26: q0 ←− f0 + h0.
27: q1 ←− f1 + h1.
28: r0 ←− k − (s0 + µs1)q0 − 2s1q1.
29: r1 ←− s1q0 − s0q1.
30: return (r0 + r1τ).

The function round() in this algorithm is a mapping of its input argument to the
integer that is the nearest neighbor of that argument. Our implementation is based on
the mathematical definitions

round(x) =

{
trunc(x + 1/2) if x > 0
trunc(x− 1/2) if x < 0

(5.13)

and

bxc =

{
trunc(x) if x > 0
trunc(x)− 1 if x < 0

. (5.14)

where trunc(x) returns the integer part of x.
In order to perform the arithmetic in Steps 5 through 7 without implementing long float-
ing point numbers, we do the calculations with 2C+1λi and 2C+1fi. Since the absolute
value of η is less than one, we switch to double precision floating-point variables (double)
in Step 7. To our opinion, using floating-point arithmetic does not deteriorate the overall
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performance in a noticeable way.
The parameter C ensures that TNAF(ρ′) of the partially reduced element is not much
longer than TNAF(ρ) of the reduced element. One can show that the length l(ρ) ≤ m+a

and for C ≥ 2 that l(ρ′) ≤ m + a + 3. The probability that ρ 6= ρ′ is less than
(

1
2

)C−5
.

Furthermore, we know that the average density of nonzero coefficients of such a TNAF is
approximately 1/3. Following the suggestion in [59], we chose C = 12 to obtain a good
performance for our TNAF multiplication methods.

The above results lead to the following algorithm for scalar point multiplication on
Koblitz curves, which has an expected running time of approximately m/3 point additions
in mixed coordinates. This corresponds to 10 ·m/3 = (10/3)m field multiplications.
Note that Step 3 corresponds to simply squaring all three coordinates of Q.

Algorithm 5.4.3 TNAF method for point multiplication [19]

INPUT: TNAF(ρ′) =
∑l−1

i=0 uiτ
i, where ρ′ = k partmod ((τm−1)/(τ−1)), P ∈ Ea(F2m).

OUTPUT: kP .

1: Q←− O.
2: for i = l − 1 downto 0 do
3: Q←− τQ.
4: if ui = 1 then
5: Q = Q + P .
6: if ui = −1 then
7: Q = Q− P .
8: return Q.

Window TNAF multiplication method

Analogous to the width-w NAF multiplication method, we can extend the TNAF multi-
plication method to a window method. Using the Lucas sequences Uw, let us define

tw := 2Uw−1U
−1
w mod 2w. (5.15)

One can show that the odd numbers ±1,±3, . . . ,±(2w−1−1) are incongruent modulo τw.
For αi = i mod τw for i ∈ {1, 3, . . . , 2w−1 − 1}, the width-w TNAF of κ ∈ Z[τ ] is the
expression κ =

∑l−1
i=0 uiτ

i, where ui ∈ {0,±α1,±α2, . . . ,±α2w−1−1}.

One key property of the width-w TNAF is that at most one of any w consecutive
coefficients is nonzero. Algorithm 5.4.4 is a simple method for computing TNAFw(κ).
Note, that Step 4 is the same as in the computation of the width-w NAF. Hence, the
implementation of this step does not differ a lot from the corresponding step in the
window NAF algorithm.
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Algorithm 5.4.4 Computing the width-w TNAF of an element in Z[τ ][19]

INPUT: w, tw, αi = βi + γiτ for i ∈ {1, 3, . . . , 2w−1 − 1}, ρ = r0 + r1τ ∈ Z[τ ].
OUTPUT: TNAFw(ρ).

1: i←− 0.
2: while r0 6= 0 OR r1 6= 0 do
3: if r0 is odd then
4: u←− r0 + r1tw mods 2w.
5: if u > 0 then
6: s←− 1.
7: else
8: s←− −1.
9: u←− −u.

10: r0 ←− r0 − sβu.
11: r1 ←− r1 − sγu.
12: ui ←− sαu.
13: else
14: ui ←− 0.
15: t←− r0/2.
16: r0 ←− r1 + µt.
17: r1 ←− −t.
18: i←− i + 1.
19: return (ui−1, ui−2, . . . , u1, u0).

Among all width-w TNAFs of length l the average density of non-zero coefficients is
approximately 1/(w + 1). Using the partial modular reduction algorithm, we obtain a
width-w TNAF of length approximately l(ρ′). The following algorithm uses TNAFw(ρ′)
to compute kP :

Algorithm 5.4.5 Window TNAF method for point multiplication [19]

INPUT: TNAFw(ρ′) =
∑l−1

i=0 uiτ
i, where ρ′ = k partmod ((τm − 1)/(τ − 1)), P ∈

Ea(F2m).
OUTPUT: kP .

1: Precompute Pu = αuP , for u ∈ {1, 3, . . . , 2w−1 − 1}.
2: Q←− O.
3: for i = l − 1 downto 0 do
4: Q←− τQ.
5: if ui 6= 0 then
6: Let u be such that αu = ui or α−u = −ui.
7: if u > 0 then
8: Q = Q + Pu.
9: else

10: Q = Q− P−u.
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11: return Q.

The precomputation requires 2w−2 − 1 point additions in affine coordinates, which
corresponds to 2w−2 − 1 field multiplications and divisions. The main multiplication
routine has an expected running time of m/(w +1) point additions in mixed coordinates,
which corresponds to 10 · m/(w + 1) field multiplications. Of course, for a fixed point
P , the precomputation needs only to be done once. In this case, we call the method
fixed-base window TNAF method.

Table 5.4.2 summarizes the complexity of the above mentioned multiplication methods
for points on Koblitz curves. Comparing these results to the complexities of methods for
general elliptic curves over F2m (Table 5.3.1), one notices that the TNAF method is faster
than the Montgomery Method. However, the window TNAF method is not faster than
the fixed-base comb method for fixed points.

Table 5.4.2 Estimated computational complexity of different multiplication methods in
terms of finite field operations.

Multiplication Method Number of Number of
Field Multiplications Field Divisions

Arbitary Point Methods
TNAF method (10/3)m -
Window TNAF Method 10m/(w + 1) + 2w−2 − 1 2w−2 − 1
Fixed Point Methods
Fixed-base Window TNAF Method 10m/(w + 1) -

5.5. Known Attacks Against Elliptic Curve Cryptosystems

In this section, we present some known attacks against elliptic curve cryptosystems. The
scope of this section is limited to algorithms solving the elliptic curve discrete logarithm
problem (ECDLP), i. e. to determine l given a point P and a point Q = lP , and it does
not consider attacks against particular elements of digital signature algorithms based on
elliptic curves. The following enumeration and further references can be originally found
in [24].

1. Naive Exhaustive Search: The most simple approach to obtain l is to compute
successive multiples of P : P, 2P, 3P, 4P, . . . until the result is equal to Q. In the
worst case, this takes n steps, where n is the order of the point P .

2. Baby-Step Giant-Step Algorithm: This algorithm is a time-memory trade-off
of the method of exhaustive search. It requires storage for about

√
n points, and its

running time is roughly
√

n steps in the worst case.
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3. Pollard’s Rho Algorithm: This algorithm is a randomized version of the baby-
step giant-step algorithm. With some modifications it can be sped up to have an
expected running time of

√
πn/2 steps and it requires only a negligible amount of

storage.

4. Parallelized Pollard’s Rho Algorithm: The original Pollard’s rho algorithm
can be parallelized so that when it is run in parallel on r processors, the expected
running time is roughly

√
πn/(2r).

5. Pollard’s Lambda Method: Pollard also presented a lambda method for comput-
ing discrete logarithms which is applicable when l, the logarithm sought, is known
to lie in a certain interval. In particular, when l is known to lie in a subinterval [0, b]
of [0, n − 1], where b < 0.39n, the parallelized version of Pollard’s lambda method
is faster than the parallelized Pollard’s rho algorithm.

6. Multiple Logarithms: It turns out that if a single instance of the ECDLP is
solved using (parallelized) Pollard’s rho method, the following instances (for the
same curve E and the same base point P ) can be solved faster, since some of
the necessary work has already been done in the previous steps. In fact, solving
k instances of the ECDLP takes only

√
k as much work as it does to solve one

instance.

Hence, the best known attack against a single instance of the ECDLP is Pollard’s rho
algorithm and has an expected running time of

√
πn/2 = O(n1/2), which is fully expo-

nential.

However, there are certain elliptic curves with special vulnerabilities that can be ex-
ploited by the following algorithms. These algorithms may have shorter running times
as those mentioned before, therefore elliptic curves with these vulnerabilities should be
avoided. Further references can be found in [24] where the following list originates.

1. Pohlig-Hellman Algorithm: This algorithm exploits the factorization of n, the
order of the point P , and reduces the problem of recovering l to the problem of
recovering l modulo each of the prime factors of n. We can then recover l by using
the Chinese Remainder Theorem. As a countermeasure, one should select an elliptic
curve whose order is a prime or almost a prime (i. e. a large prime times a small
integer).

2. Supersingular Elliptic Curves: In some cases, the ECDLP in an elliptic curve
E defined over a finite field Fq can be reduced to the ordinary discrete logarithm
problem (DLP) in the multiplicative group of some extension field Fqk for k ≥ 1.
The DLP is the underlying computationally hard mathematical problem for the
DSA and one can solve it using the number field sieve algorithm, which has a sub-
exponential running time. To ensure that the reduction algorithm does not apply
to a particular curve, one only needs to check that n does not divide qk − 1 for all
small k for which the DLP in Fqk is tractable. In practice, it suffices to check this
for 1 ≤ k ≤ 20 when n > 2160.
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3. Prime-Field Anomalous Curves: If the number of points on a curve E over Fp

is equal to p, the ECDLP can be solved efficiently. This attack can be avoided by
verifying that the number of points on an elliptic curve is not equal to the cardinality
of the underlying field.

4. Curves Defined Over a Small Field: For elliptic curves E with coefficients in
F2e , Pollard’s rho algorithm for computing elliptic curve logarithms in E(F2ed) can
be further sped up by a factor of

√
d. For example, if E is a Koblitz curve, then

Pollard’s rho algorithm for computing elliptic curve logarithms in E(F2m) can be
sped up by a factor of

√
m.

5. Curves Defined Over F2m, m Composite: The Weil descent might be used to
solve the ECDLP for elliptic curves defined over F2m where m is composite. There
exists some evidence that when m has a small divisor l, e.g. l = 4, the ECDLP
can be solved faster than with Pollard’s rho algorithm. Thus, elliptic curves over
composite fields should not be used.

Finally, let us examine how secure elliptic curve cryptography is in practice. One source
that gives a notion about the security of ECC is the Certicom challenge [42]. The challenge
is to compute the ECC private keys from a given list of ECC public keys and associated
system parameters. The challenge has been issued in November 1997 and consists of two
levels:

� Level I: 109-bit and 131-bit challenge; considered to be feasible

� Level II: 163-bit, 191-bit, 239-bit and 359-bit challenge; expected to be computa-
tionally infeasible

Of the Level I challenges, the 109-bit ECC2K-108 challenge has been solved in April
2000 and the 109-bit ECCp-109 challenge has been solved in November 2002. All other
challenges are (until March 2003) unsolved. According to Certicom, the computational
cost to solve these challenges met the expected values.

Concrete recommendations based on the expected cost of the Certicom challenge have
been presented by Lenstra and Verheul in [33]. Using a model that incorporates tech-
nological and cryptanalytical advances they predict which elliptic curve key sizes can be
considered as secure until which year. Elliptic curves with a key size of 140-bit, for exam-
ple, shall provide a sufficient level of security for commercial applications until the year
2003. The authors assume that a computational cost of about 3.5 ·1010 Mips years can be
considered to be infeasible until the year 2003. Table 5.5.1 presents their recommendations
for future years.
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Table 5.5.1 Minimum key size for elliptic curve cryptosystems providing a sufficient level
of security [33].

Year
Elliptic Curve

Key Size
Infeasible Number

of Mips Years

Corresponding
Number of Years

on 450MHz
Pentium II PC

2002 139 2.06 · 1010 4.59 · 107

2003 140 3.51 · 1010 7.80 · 107

2004 143 5.98 · 1010 1.33 · 108

2005 147 1.02 · 1011 2.26 · 108

2006 148 1.73 · 1011 3.84 · 108

2007 152 2.94 · 1011 6.54 · 108

2008 155 5.01 · 1011 1.11 · 109

2009 157 8.52 · 1011 1.89 · 109

2010 160 1.45 · 1012 3.22 · 109

2011 163 2.47 · 1012 5.48 · 109

2012 165 4.19 · 1012 9.32 · 109

2013 168 7.14 · 1012 1.59 · 1010

2014 172 1.21 · 1013 2.70 · 1010

2015 173 2.07 · 1013 4.59 · 1010

2016 177 3.51 · 1013 7.81 · 1010

2017 180 5.98 · 1013 1.33 · 1011

2018 181 1.02 · 1014 2.26 · 1011

2019 185 1.73 · 1014 3.85 · 1011

2020 188 2.94 · 1014 6.54 · 1011

2021 190 5.01 · 1014 1.11 · 1012

2022 193 8.52 · 1014 1.89 · 1012
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6. Implementation

Following the results of our analysis of the secure charging protocol in Chapter 4 and
equipped with the background information about elliptic curve cryptography, we devel-
oped an efficient implementation of the elliptic curve digital signature algorithm and the
appertaining arithmetic operations on the Sharp Zaurus PDA platform. We provided
an interface for the OpenSSL crypto library [3] allowing for easy integration into the
prototype implementation of the secure charging protocol as well as other applications.
As programming language for the implementation we chose ANSI C resulting in an easy
portability of the code to other platforms.

As mentioned in Section 5.1.2, the finite field F2m with a polynomial basis representation
of its elements is well-suited to modern microprocessor architectures. Consequently, we
chose elliptic curves over F2m as curves for our ECDSA implementation and not elliptic
curves over prime fields. Moreover, the authors of [19, 64] showed that Koblitz curves
allow faster elliptic curve arithmetic and are well-suited for constrained target platforms.
This is our motivation for implementing ECDSA routines that are optimized for Koblitz
curves. Note, that a typical device in ad-hoc networks has only limited CPU power
and that in protocol applications possibly a considerable amount of signature operations
needs to be done a short time. Consequently, we focused on a fast and ressource saving
implementation.

In this chapter, we describe which software development process we chose for our par-
ticular problem and give reasons for our design decisions. The chapter is organized as
follows. We start with an introduction to our target platform in Section 6.1. A description
of the software architecture, the development process and details of the implementation is
contained in Section 6.2 and the following sections. We present our approaches to speed
up the execution times of the signature operations in Section 6.7. The known limitations
of our implementations together with the execution times on our target platform end this
chapter.

6.1. Target Platform

Target platform for the implementation is a Sharp Zaurus SL-5500G Personal Digital
Assistant (PDA) which is a typical device for wireless ad-hoc networks. According to
[57], it is equipped with the EmbedixTM Linux

�
2.4 operating system and a StrongARM

�

(SA-1110) CPU clocked at 206 MHz. The Intel
�

SA-1110 CPU is based on the ARM V4
architecture described in [5]. The processor incorporates typical Reduced Instruction Set
Computer (RISC) features such as:
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� 31 general-purpose 32-bit registers. 16 of them are visible at a time, the others are
used to speed up exception processing. Of the visible registers 14 can freely be used,
the remaining two are reserved as program counter and return address storage

� A load/store architecture, where data-processing only operates on register contents,
not directly on memory contents

� Uniform and fixed-length instruction fields with conditional execution feature

� Arithmetic Logic Unit (ALU) and shifter can be controlled in every processing step

� Load and Store Multiple instructions maximize data throughput

The 32-bit register architecture motivates the usage of 32-bit word variables throughout
the implementation.

The size of the memory is specified as 64 MB RAM and 16 MB flash ROM. The
RAM is further subdivided into 32 MB for processes, buffers, cache, and 32 MB for
additional file and directory storage [56]. Compared to usual desktop PCs this is very few
available memory, so one of the major goals of this thesis is to develop a fast but small
implementation of the elliptic curve routines.

Our implementation is done in C. The compiler used for the development is a GNU
cross-compiler supplied by EmbedixTM [2] that builds executables for the ARM V4 archi-
tecture and Linux OS.

6.2. Software Architecture

After analyzing the structure of ECDSA, we feel that it is the best choice to use the
bottom-up approach for developing the implementation. Hence, we organize the software
in the following layered model (Figure 6.2.1).

The layers can be described as follows, starting from the lowest:

1. Finite Field and Long Integer Arithmetic Layer
The elliptic curve arithmetic is based on finite field arithmetic and in case of Koblitz
curves, it also needs long integer arithmetic. This layer provides an efficient imple-
mentation of all necessary methods. It has a key influence on the performance of
all higher layers, therefore we decided to tailor our implementation to a particular
finite field. More details can be found in Section 6.3.

2. Elliptic Curve Arithmetic Layer
The Elliptic Curve Arithmetic Layer includes implementations of several different
methods for scalar multiplication of points on an elliptic curve, the implementation
of point addition in different types of coordinates (used by multiplication methods
and higher layers) and a couple of helper functions. Section 6.4 contains a detailed
description of this layer.
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3. ECDSA Sign and Verify Layer
The next layer of our optimized implementation is the ECDSA Sign and Verify
Layer. It provides lightweight interfaces for the sign and verify operations as well
as initialization and precomputation routines. This layer is described in detail in
Section 6.5.

4. OpenSSL Interface Layer
This layer embeds the optimized ECDSA implementation into the existing OpenSSL
framework. The OpenSSL framework is organized in a modular manner, therefore
the integration of new methods or different implementations of existing methods is
quite easy. We describe this process later on in Section 6.6.

Figure 6.2.1 Architecture Overview

OpenSSL Interface

ECDSA Sign and Verify

Elliptic Curve Arithmetic

Finite Field and Long Integer Arithmetic

Point Addition Point Multiplication

Finite Field Arithmetic Long Integer Arithmetic

The major advantage of implementing the lowest layer first and gradually combining
modules is that testing and debugging becomes easier. The modules on the low layer
can be tested and debugged separately from other components. Higher layer modules are
not developed before the modules on lower layers function correctly according to their
specifications. Tests of these higher layer modules can rely on the correctness of the
incorporated modules.

From the optimization point of view, the bottom-up approach is also very attractive.
The functions on the lower layers of the model form the time critical part of the code, since
they are usually executed more often than those on higher layers. We have the possibility
to determine the execution times of the isolated modules and can directly measure the
influence of optimization approaches on their performance.
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6.3. Finite Field Arithmetic in F2m and Long Integer Arithmetic

6.3.1. Finite Field Arithmetic

The following explanations and our implementation of finite field arithmetic are mostly
based on [19] and [64]. The files g2fm_inline_gen.h, g2fm_inline.c, g2fm_gen.h,
g2fm_gen.c, g2fm.h, and g2fm.c contain our implementation. The reasons for this file
structure are explained in Section 6.7, which treats our optimization approaches.

Field representation

As mentioned in [19] and in Section 5.1.2 of this document, the polynomial basis repre-
sentation of F2m with a trinomial or pentanomial as a reduction polynomial f(x) appears
to yield the simplest and fastest implementation in software. Therefore, we use this
representation throughout our implementation of finite field arithmetic.

Consequently, we write an element A ∈ F2m as polynomial A(x) =
∑m−1

i=0 aix
i and store

it as binary vector A = (am−1, . . . , a0). How to store these coefficients in computers is
straightforward: since they are binary values, one can store each coefficient in one bit of
memory. Due to the 32-bit register architecture of the StrongARM CPU, we use an array
of s = dm/32e 32-bit words (A[s − 1], . . . , A[0]). The rightmost bit of A[0] corresponds
to a0 and am−1 is part of A[s− 1]. The bits left of am−1 are set to zero. For m = 163 an
array of s = 6 32-bit words would be sufficient.

We basically defined two types, namely gf2mShortElement and gf2mLongElement, that
are arrays of s and 2s words. The later type holds intermediate results of multiplications
or squarings, while the first one is used for all other field elements.

Addition

As stated in Section 5.1.2, addition of field elements is performed by bitwise XOR oper-
ations that will be denoted by ⊕. The ARM V4 architecture offers native 32-bit XOR
instructions, thus addition should only require s operations.

Multiplication

The product c = a · b is computed by first evaluating c′(x) = a(x) · b(x) followed by
modular reduction c(x) ≡ c′(x) mod f(x).

Polynomial Multiplication

To our knowledge, Algorithm 6.3.1 is the fastest method to compute c = a · b. It
does this by using a window method [38]. In Step 1, polynomials Bu = u(x) · b(x) are
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precomputed for 0 ≤ u ≤ 2w where w is the window size. This is done using a couple of
left shifts and cumulative field element additions. In Steps 6 and 10 the m-bit vector Bu

is added to C where the rightmost bit of Bu is added to the rightmost bit of C{j}. Here,
C{j} denotes the bit vector (C[2s−2], . . . , C[j]) and the symbol � denotes a bitwise left
shift. The result of the algorithm is not reduced, so c(x) is of degree at most 2m− 2.

Algorithm 6.3.1 Left-to-right comb method with windows of width w = 4 [19]

INPUT: Binary polynomials a(x) and b(x) of degree at most m− 1.
OUTPUT: A binary polynomial c(x) = a(x)·b(x) of degree at most 2m−2.

1: Compute Bu = u(x) · b(x) for all polynomials u(x) of degree at most 3.
2: C ←− 0.
3: for k = 7 downto 1 do
4: for j = 0 to s− 1 do
5: Let u = (u3, u2, u1, u0), where ui is bit (4k + i) of A[j].
6: C{j} ←− C{j} ⊕Bu.
7: C{j} ←− C{j} � 4.
8: for j = 0 to s−1 do {The case k = 0. This saves one comparison in the loop above.}
9: Let u = (u3, u2, u1, u0), where ui is bit i of A[j].

10: C{j} ←− C{j} ⊕ Bu.
11: return c(x).

Modular Reduction

By choosing the reduction polynomial f(x) to be a low weight polynomial, i.e. one
with the least possible number of non-zero coefficients, reduction modulo f(x) becomes a
computationally cheap operation [6]. For cases of practical interest, f(x) is a trinomial or
pentanomial, i.e. the number of non-zero coefficients is 3 or 5. If the middle terms in f(x)
are close to each other, then reduction of c(x) modulo f(x) can be efficiently performed
one word at a time. Suppose f(x) = x163 + x7 + x6 + x3 + 1. Then

x163 ≡ x7 + x6 + x3 + 1 mod f(x)
...

x288 ≡ x132 + x131 + x128 + x125 mod f(x)
...

x324 ≡ x168 + x167 + x164 + x161 mod f(x)

Hence, reduction can be performed by adding to C properly aligned all those C[j] that
contain the coefficients ck, 163 ≤ k ≤ 324.

Let us clarify this with an example. Suppose we have already reduced C[10] and now
want to reduce C[9], which contains bits 288 through 319. We can write the corresponding
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polynomial as

c(9)(x) =

31∑

k=0

ck+288 · xk+288 = x288
31∑

k=0

ck+288 · xk

≡ (x132 + x131 + x128 + x125) ·
31∑

k=0

ck+288 · xk

︸ ︷︷ ︸

C[9]

mod f(x)

Now, we add the coefficients of xi in c(9)(x) to the corresponding coefficient of xi in C.
Figure 6.3.1 shows how C[9] is aligned and how the words C[5] through C[3] of C are
affected.

Figure 6.3.1 This figure shows how the four shifted versions of C[9] are aligned before
being added to C.

C[5] C[4] C[3]

C[9]

C[9]

C[9]

C[9]

191 159 127160 128 96

The result of these thoughts is Algorithm 6.3.2. The left shift of bits is denoted by
� and the right shift by �. Due to the automatic code generator, our implementation
supports different reduction polynomials. The generator automatically outputs the code
appropriate for the chosen trinomial or pentanomial (see also Section 6.7.4).

Algorithm 6.3.2 Modular reduction in F2m by f(x) = x163 + x7 + x6 + x3 + 1 [19]

INPUT: A binary polynomial c(x) of degree at most 2m− 2 = 324.
OUTPUT: A binary polynomial c(x) mod f(x) of degree at most m−1.

1: for i = 10 downto 6 do {Reduce C[i] modulo f(x)}
2: T ←− C[i].
3: C[i− 6]←− C[i− 6]⊕ (T � 29).
4: C[i− 5]←− C[i− 5]⊕ (T � 4)⊕ (T � 3)⊕ T ⊕ (T � 3).
5: C[i− 4]←− C[i− 4]⊕ (T � 28)⊕ (T � 29).
6: T ←− C[5] and 0xFFFFFFF8. {Clear bits 0, 1 and 2 of C[5].}
7: C[0]←− C[0]⊕ (T � 4)⊕ (T � 3)⊕ T ⊕ (T � 3).
8: C[1]←− C[1]⊕ (T � 28)⊕ (T � 29).
9: C[5]←− C[5] and 0x00000007. {Clear the unused bits of C[5].}
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10: return (C[5], C[4], C[3], C[2], C[1], C[0]).

Squaring

Squaring in F2m can be done much faster than multiplying two arbitrary elements. It
turns out to be a linear operation, because for a(x) =

∑m−1
i=0 aix

i one finds

a2(x) =
m−1∑

i=0

m−1∑

j=0

aiajx
i+j =

m−1∑

i=0

aix
2i

Hence, squaring can be done by simply inserting a 0-bit between consecutive bits of the
binary representation of a. A fast way to do that is to use a table of precomputed values
as shown in Algorithm 6.3.3 [54], which is a static table in our implementation. Hence,
the precomputation step needs not to be done during run-time. The reduction step is
done using Algorithm 6.3.2.

Algorithm 6.3.3 Squaring in F2m [54]

INPUT: A binary polynomial a(x) of degree at most m− 1.
OUTPUT: A binary polynomial b(x) = a2(x) mod f(x) of degree at most m− 1.

1: Precompute for each byte v = (v7, . . . , v1, v0) the 16-bit vector
T (v) = (0, v7, . . . , 0, v1, 0, v0).

2: for i = 0 to s− 1 do
3: Let A[i] = (u3, u2, u1, u0) where each uj is a byte.
4: C[2i]←− (T (u1), T (u0)), C[2i + 1]←− (T (u3), T (u2)).
5: Compute b(x) = c(x) mod f(x). {using Algorithm 6.3.2.}
6: return b(x).

Modular division

Based on a paper by Sheueling Chang Shantz [55] Algorithm 6.3.4 is used to compute
the modular division a

b
directly, because the running time is roughly the same as the one

of the Extended Euclidean Algorithm that computes the modular inverse. By doing so,
we save one modular multiplication. The comparison between two elements is done by
treating the 32-bit words as unsigned integers where A[i+1] is more significant than A[i].

Algorithm 6.3.4 Modular Division in F2m [55]

INPUT: Binary polynomials a(x) and b(x) 6= 0 of degree at most m− 1.

OUTPUT: A binary polynomial c(x) = a(x)
b(x)

mod f(x) of degree at most m−1.
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1: A←− b, B ←− f , U ←− a, V ←− 0.
2: while A 6= B do
3: if A is even then
4: A� 1.
5: if U is odd then
6: U ←− U ⊕ f .
7: U � 1.
8: else if B is even then
9: B � 1.

10: if V is odd then
11: V ←− V ⊕ f .
12: V � 1.
13: else if A > B then
14: A←− A⊕B
15: A� 1.
16: U ←− U ⊕ V
17: if U is odd then
18: U ←− U ⊕ f
19: U � 1.
20: else
21: B ←− A⊕B
22: B � 1.
23: V ←− U ⊕ V
24: if V is odd then
25: V ←− V ⊕ f
26: V � 1.
27: return U(x).

6.3.2. Long Integer Arithmetic

The implementation of point multiplication methods that are optimized for elliptic curves
of Koblitz type requires long integer arithmetic. Long integer arithmetic consists of arith-
metic operations with integers that are longer than the 32-bit integers that are supported
by native CPU operations.
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Long integer representation

We use the following structure to represent long integers:

typedef struct

{

Word32 *data;

bool bNegative;

unsigned int nWordsUsed;

unsigned int nWordsAllocated;

} longint;

The member data points to an array that contains the absolute value of the long integer.
The least significant bit is bit 0 of data[0] and the most significant bit is bit 31 of the last
element of the array. For performance reasons, data points mostly to statically allocated
memory (on the stack), however, sometimes we also dynamically allocate memory on
the heap. The boolean bNegative contains the sign of the long integer, i.e. it is true
if the integer is a negative number. We chose the absolute value / sign representation
instead of the two’s complement representation, because for a sign inversion, the two’s
complement representation requires as many inversions as there are words whereas the
absolute value / sign representation requires only a change of the sign flag. The two
members nWordsAllocated and nWordsUsed specify how many words of memory have
been allocated for the absolute value of the long integer (the chunk of memory that data
points to) and how much of it is really used. Hence, the last used element of the array
is always data[nWordsUsed - 1]. This kind of design is necessary, on one hand for
compatibility reasons (OpenSSL uses a similar representation) and on the other hand in
order to represent long integers with many different lengths as they appear as intermediate
results of the Koblitz curve arithmetic.

Addition

We implemented the addition algorithm as it is given in [45], Algorithm 14.7. However,
since we have to do signed multiprecision integer arithmetic, our routine also contains a
sign check that treats the following two cases separately:

1. Both operands have the same sign: Add the absolute values and set the sign of the
result to the common sign.

2. The signs of the operands are different: Subtract the absolute value of the operand
with the greater absolute value from the one with the smaller absolute value and
set the sign of the result to the sign of the operand with greater absolute value.
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Another difficulty is how to correctly determine carries in the C programming language.
It does not offer direct access to the carry flag of the processor, so we use the following
algorithm:

Algorithm 6.3.5 Addition with carry detection in the C programming language

INPUT: Two operands a and b, a carry flag c.
OUTPUT: The result of a+b+c and a new carry flag c′.

1: Compute s = a + b and set c′ = 0.
2: if s < a OR s < b then {Check for an overflow.}
3: Set r = s + c and set c′ = 1.
4: else
5: if c 6= 0 then {Adding the carry flag could also cause an overflow.}
6: r = s + c.
7: if r = 0 then {Carry flag caused an overflow, thus, propagate carry.}
8: c′ = 1
9: return r and c′.

For the subtraction, the situation is somewhat easier, because we can detect the overflow
prior to the subtraction by comparing both operands. Here is our algorithm to correctly
detect the borrows:

Algorithm 6.3.6 Subtraction with borrow detection in the C

INPUT: Two non-negative words a and b, a borrow flag c.
OUTPUT: The result of a−b−c and a new borrow flag c′.

1: Compute r = a− b− c and set c′ = c.
2: if a < b then
3: Set c′ = 1.
4: else
5: if a > b then
6: Set c′ = 0.
7: return r and c′.

Multiplication

The multiplication algorithm for long integers is based on Algorithm 14.12 in [45]. We
implemented a slightly modified version that can be used to only calculate partial results.
This significantly increases the performance of the modular reduction algorithm, since
it only needs partial results. The algorithm multiplies the absolute values of the long
integers, the sign of the result is determined separately.
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Algorithm 6.3.7 Long integer multiplication

INPUT: Two non-negative long integers a, b, their sizes (number of words) la, lb, and
the range [llowr , lhigh

r ] of words of the result to be calculated.
OUTPUT: The result r = a·b, but only the words (rllowr

, rllowr +1, . . . , rlhigh
r

).

1: rk = 0, k ∈ [0, la + lb − 1].
2: for j = 0 to lb − 1 do
3: c = 0.
4: for i = max(0, llowr − j) to min(lhigh

r − j, la − 1) do
5: (uv) = c + ai · bj + ri+j.
6: c = u.
7: ri+j = v.
8: if i + j < lhigh

r then
9: ri+j = c.

10: return (rllowr
, rllowr +1, . . . , rlhigh

r

).

Note that Step 5 of Algorithm 6.3.7 requires the 64-bit result of a multiplication of two
32-bit operands. Fortunately, the C Standard Library supports such an operation. It is
also a native operation of the ARM Assembler Instruction set, hence, we do not expect
this operation to cause a significant performance deterioration.

Division

We implemented Algorithm 14.20 of [45] for long integer division and also included the
optimizations suggested by the authors. The optimized division algorithm looks like that:

Algorithm 6.3.8 Long integer division [45]

INPUT: Two non-negative long integers a = (ala−1, . . . , a1, a0), b = (blb−1, . . . , b1, b0),
and their sizes (number of words) la, lb.
OUTPUT: The result r = ba/bc = (rla−lb , . . . , r1, r0).

1: Set rj ←− 0, j ∈ [0, la − lb].
2: while ala−1 < 230 do {Normalization}
3: a = a� 1, b = b� 1.
4: while a ≥ 232(la−lb)b do
5: rla−lb ←− rla−lb + 1, a←− a− 232(la−lb)b.
6: for i = la − 1 downto lb do
7: if ai = blb−1 then
8: Set ri−lb ←− 232 − 1.
9: else

10: Set ri−lb ←− b(232ai + ai−1)/blb−1c.
11: while ri−lb(2

32blb−1 + blb−2) > 264ai + 232ai−1 + ai−2 do
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12: ri−lb ←− ri−lb − 1.
13: a←− a− ri−lb · 232(i−lb)b.
14: if a < 0 then
15: Set a←− a + 232(i−lb)b and ri−lb ←− ri−lb − 1.
16: return r.

Note that in Steps 10 and 11 of Algorithm 6.3.8, 64-bit multiplication and 64-bit division
is used. These operations are supported by the C Standard Library and since long integer
division is only rarely used in our routines, there is no optimization necessary.

Modular reduction

We implemented the Barret modular reduction algorithm as it is given in Algorithm 14.42
of [45]. This algorithm needs the precomputation of the quantity µ = b22bm/32c·32/mc
where m is the bit size of the modulus. In our case the modulus is always the modulus
of the elliptic curve domain, so we only need to compute µ once during the initialization
phase of our library. This is the reason why we chose the Barret algorithm as reduction
algorithm.

Algorithm 6.3.9 Barret modular reduction of long integers [45]

INPUT: Two positive long integers x = (x2(lm−1), . . . , x1, x0), m = (mlm−1, . . . , m1, m0)
(with mlm−1 6= 0), and µ = b22lm·32/mc.
OUTPUT: The result r = x mod m.

1: q1 ←− bx/232(lm−1)c, q2 ←− q1 · µ, q3 ←− bq2/232(lm+1)c.
2: r1 ←− x mod 232(lm+1), r2 ←− q3 ·m mod 232(lm+1), r ←− r1 − r2.
3: if r < 0 then
4: r ←− r + 232(lm+1)

5: while r ≥ m do
6: r ←− r −m.
7: return r.

Modular inversion

The modular inversion algorithm we implemented is a variant of the Extended Euclidean
Algorithm (EEA) and is given in [7].
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Algorithm 6.3.10 Modular inversion of long integers [7]

INPUT: Two positive long integers a = (a(la−1), . . . , a1, a0), m = (mlm−1, . . . , m1, m0).
OUTPUT: The result r = a−1 mod m.

1: u←− a, v ←− m, A←− 1, C ←− 0.
2: while u 6= 0 do
3: while u is even do
4: u←− u/2.
5: if A is even then
6: A←− A/2.
7: else
8: A←− (A + m)/2.
9: while v is even do

10: v ←− u/2.
11: if C is even then
12: C ←− C/2.
13: else
14: C ←− (C + m)/2.
15: if u ≥ v then
16: u←− u− v, A←− A− C.
17: else
18: u←− v − u, C ←− C − A.
19: return C mod m.

6.3.3. Timings

Table 6.3.1 summarizes the execution time of the basic finite field arithmetic we imple-
mented. We use the times obtained for a 163-bit Koblitz curve as an example, since the
times for other extension degrees show a similar behavior. Obviously, multiplication and
division dominate the execution times of the remaining operations.

Table 6.3.1 Execution times in microseconds of basic finite field arithmetic for F2163 on
a Sharp Zaurus at 206MHz and on an Intel Pentium II at 300 MHz.

Arithmetic Sharp Zaurus Intel Pentium II
Operation 206 MHz 300 MHz
Addition 1 � s < 1 � s
Modular Reduction 2 � s 1 � s
Squaring 2 � s 1 � s
Multiplication 13 � s 6 � s
Division 116 � s 60 � s
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6.4. Elliptic Curve Arithmetic

In this section, we describe our implementation of the elliptic curve arithmetic algorithms
more in detail. In particular, we mention the difficulties we encountered and explain our
design decisions.

6.4.1. Definitions

For our implementation, we define the points with the affine coordinates (0, 0) and with
the projective coordinates (·, ·, 0), i.e. the projective points with z = 0, to be the point at
infinity O.

6.4.2. Efficient Point Addition

Addition using affine coordinates

We implemented Equations (5.2) for adding two points that are given in affine coordinates.
The implementation is straightforward, once the finite field arithmetic is working prop-
erly. However, in order to maximize the speed of the addition operations, we distinguish
between the following special cases within our implementation (Figure 6.4.1):

1. P1 = −P2 (result is O),

2. P1 = P2 (point doubling, Equation (5.2)),

3. P1 = O or P2 = O (result is either P2 or P1),

4. general point addition (Equation (5.2)).

The third case can be detected relatively easy by comparing the points to our definition
of the point at infinity. For P1 = (x1, y1) and P2 = (x2, y2) the other cases are

1. P1 = −P2 iff x1 = x2 and y1 = x2 + y2,

2. P1 = P2 iff x1 = x2 and y1 = y2.

In the case of adding two points having the same coordinates, i.e. x1 = x2 and y1 = y2,
the case of x1 = x2 = 0 has to be treated separately, because Equations (5.2) are not
defined for this case (division by zero). In this case, the result is, by definition, the point
at infinity O.
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Figure 6.4.1 Flow diagram of the decision process to distinguish the special cases for
point addition in affine coordinates.
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Addition using mixed coordinates

Analogue to the addition using affine coordinates, adding a point given in affine coordi-
nates to a point given in projective coordinates can be realized by simply implementing
Equations (5.4). We also distinguish the special cases mentioned above (Figure 6.4.2).
Due to the representation in different coordinates, the conditions for these special cases
have to be slightly modified. Suppose we are given a point Pproj = (X1, Y1, Z1) given in
projective coordinates and a point Paff = (x2, y2) given in affine coordinates. Transferring
Pproj to affine coordinates, we get Pproj = (X1/Z1, Y1/Z

2
1). Now, we can use the conditions

for points in affine coordinates to derive the special cases for mixed coordinates.

These cases are

1. Pproj = −Paff iff X1 = x2 · Z1 and Y1 = (x2 + y2) · Z2
1 ,

2. Pproj = Paff iff X1 = x2 · Z1 and Y1 = y2 · Z2
1 .
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Figure 6.4.2 Flow diagram of the decision process to distinguish the special cases for
point addition in mixed coordinates.
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6.4.3. Efficient Point Multiplication

Most of our implementation of the point multiplication methods has already been de-
scribed in Chapter 5. However, since our sources do not explicitly cover the implemen-
tation of the precomputation steps needed for the windowed methods, we present our
approaches in the following.

Fixed-base comb method

The very fast scalar point multiplication of the fixed-base comb method (Algorithm 5.3.5)
is due to the fact that a great part of the computation is done only once for a base
point of the elliptic curve and stored for the actual computation. In our implemen-
tation, the precomputation is done during the initialization step within the function
ecdsaInitDomain(). This way, no further precomputation is necessary for the actual
computation of scalar multiplications. The precomputation is done according to Algo-
rithm 6.4.1.
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Algorithm 6.4.1 Precomputation steps for the Fixed-base comb method for point mul-
tiplication

INPUT: Window width w, P ∈ E(GF (2m)).
OUTPUT: Pn =

∑w−1
i=0 ni2

i·dP for 0 ≤ n ≤ 2w − 1.

1: P0 ←− O.
2: P1 ←− P .
3: j ←− 2.
4: while j ≤ 2w−1 do
5: Pj ←− 2dPj�1.
6: for r = 1 to j − 1 do
7: Pj+r ←− Pj + Pr.
8: j ←− j � 1.
9: return Pn for 0 ≤ n ≤ 2w − 1

The computation in Step 5 equals to d doublings of the point Pj�1. Since doubling in
projective coordinates is faster than in affine coordinates, we convert the point to projec-
tive coordinates before the computation and convert the result back to affine coordinates
after the computation. The point addition in Step 7 is performed in affine coordinates,
because the main multiplication routine needs the precomputed points given in affine
coordinates.

Window TNAF method

The TNAF method and the window TNAF method for point multiplication on Koblitz
curves require some amount of precomputation if several different curves shall be sup-
ported. Our implementation contains a function ecpointInitKoblitzCurve() that is
called within the initialization function ecdsaInitDomain() if the chosen curve is a
Koblitz curve. This function essentially allocates the required dynamic memory and
computes the following quantities needed for the

� Partial Modular Reduction (Algorithm 5.4.2) [59]:

– Vm,

– si = (−1)i

f
(1− µUm+3−a−i) for i ∈ {0, 1}.

� Computation of TNAFw(ρ) (Algorithm 5.4.4) [59]:

– Uw,

– tw = 2Uw−1U
−1
w (mod 2w).
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� Window TNAF method (Algorithm 5.4.5) [59]:

– Ui for 0 < i < w,

– τ i = Uiτ − 2Ui−1 for 0 < i < w,

– αu and TNAF(αu) using Algorithm 6.4.2.

In above equations, Uk and Vk are the Lucas sequences that can be computed via the re-
cursion formulas (Equation (5.12)), w is the window width for the window TNAF method,
m is the extension degree of the finite field F2m, f is the cofactor and a is the parameter
of the Koblitz curve Ea (see also Table 5.4.1).

Algorithm 6.4.2 Computation of αu and TNAF(αu)

INPUT: Window width w
OUTPUT: αu,

(

k
(u)
w−1, k

(u)
w−2, . . . , k

(u)
0

)

= TNAF(αu) for u ∈ {1, 3, . . . , 2w−1−1}.
1: α0 ←− 1.
2: for i = 1 to 2w−2 do
3: κ←− 2i + 1 partmod ((τm − 1)/(τ − 1)).

4:

(

k
(2i+1)
w−1 , k

(2i+1)
w−2 , . . . , k

(2i+1)
0

)

←− TNAF(κ).

5: α2i+1 ←− 0.
6: for j = w − 1 downto 0 do
7: α2i+1 ←− α2i+1 + k

(2i+1)
j · τ j.

8: return αu and
(

k
(u)
w−1, k

(u)
w−2, . . . , k

(u)
0

)

for u ∈ {1, 3, . . . , 2w−1 − 1}.

The window TNAF method (Algorithm 5.4.5) requires the precomputation of Pu = αuP
for u ∈ {1, 3, . . . , 2w−1 − 1}. In our implementation, we realize this precomputation with
Algorithm 6.4.3.

Algorithm 6.4.3 Precomputation steps for the window TNAF method for point multi-
plication

INPUT: Window width w, P ∈ E(GF (2m)), (k
(l)
w−1, k

(l)
w−2, . . . , k

(l)
0 ) = TNAF(α2l+1) for

l ∈ {0, 1, . . . , 2w−2 − 1}
OUTPUT: Pu = αuPu for u ∈ {1, 3, . . . , 2w−1 − 1}.
1: for l = 0 to 2w−2 − 1 do
2: Pl ←− O.
3: for j = w − 1 downto 0 do
4: if kj 6= 0 then
5: if kj = 1 then
6: P2l+1 ←− P2l+1 + τ jP .
7: else
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8: P2l+1 ←− P2l+1 − τ jP .
9: return Pu for u ∈ {1, 3, . . . , 2w−1 − 1}.

6.4.4. Timings

Table 6.4.1 Execution times in microseconds for point arithmetic on the elliptic curve
sect163k1 which is a Koblitz curve over F2163 . Times were obtained on a Sharp Zaurus
at 206MHz and on an Intel Pentium II at 300 MHz.

Arithmetic Operation Sharp Zaurus Intel Pentium II
206 MHz 300 MHz

Point Addition (mixed coordinates) 121 � s 64 � s
Point Addition (affine coordinates) 158 � s 83 � s
Point Doubling 61 � s 35 � s
Point Multiplication Methods for General Curves
Binary Method 13560 � s 7440 � s
Window NAF Method (w = 4) 10920 � s 6000 � s
Montgomery Method 8960 � s 4840 � s
Fixed-Base Comb Method (w = 9), without
precomputation time

2680 � s 1400 � s

Point Multiplication Methods for Koblitz Curves
TNAF Method 6720 � s 3080 � s
Window TNAF Method (w = 4) 5320 � s 2400 � s
Fixed-base Window TNAF Method (w = 11),
without precomputation time

3160 � s 1440 � s

Table 6.4.1 reflects the execution times of point addition and multiplication on our target
platform. The window sizes for the windowed multiplication methods correspond to the
choices that will be discussed in Section 6.5. The performance gap between addition in
affine and in mixed coordinates turns out to be greater than estimated in Section 5.3.1.
The remaining times are better than our estimations. Table 6.4.2 shows the influence
of different window sizes on the execution times of the fixed-base point multiplication
methods. Note, that our implementation also supports curves other than the 163-bit
Koblitz curve used in the tables. However, since the results for other curves show a similar
behavior, we limit our presentation to the exemplary timings for the 163-bit Koblitz curve.
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Table 6.4.2 Execution times in milliseconds of fixed-base point multiplication methods
for different window sizes on the elliptic curve sect163k1 which is a Koblitz curve over
F2163 . Times were obtained on a Sharp Zaurus at 206MHz.

Window Fixed-base Comb Method Fixed-base Window TNAF Method
Width Precomputation Multiplication Precomputation Multiplication

4 0.5ms 4.8ms
5 1.5ms 4.4ms
6 21.7ms 3.8ms 3.8ms 4.0ms
7 32.4ms 3.2ms 9.5ms 3.8ms
8 53.2ms 2.9ms 22.6ms 3.6ms
9 94.8ms 2.7ms 52.6ms 3.4ms
10 176.8ms 2.4ms 119.8ms 3.3ms
11 240.1ms 2.2ms 268.6ms 3.2ms
12 664.0ms 2.1ms 598.9ms 3.1ms

6.5. Implementation of the Elliptic Curve Digital Signature
Algorithm (ECDSA)

Although the realization of the ECDSA according to Algorithms 3.3.2 (signature gen-
eration) and 3.3.3 (signature verification) is straightforward, it involves several design
decisions, which we describe in this section. We explain which multiplication methods
we chose and which parameter settings lead to the best performance. After introducing
the flexible and modular structure of our implementation, we end this section with an
elaboration on how strong random numbers for the ECDSA are obtained.

6.5.1. Optimal Point Multiplication Methods

Taking a look at Algorithms 3.3.2 and 3.3.3, one notices that the crucial operations
are the scalar point multiplication kG in the first algorithm and the two scalar point
multiplications u1G and u2Q in the later one. They are crucial, because they dominate the
execution time of the algorithms. All other operations such as modular integer arithmetic
take only a fraction of the time that scalar point multiplication on an elliptic curve takes.

The algorithms use two different types of scalar point multiplication:

1. multiplication of some scalar k with the fixed base point G

2. multiplication of some scalar l with an arbitrary point Q
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For the first type of multiplication, we know the point G already during the initialization
phase of our program. This point is declared together with the other domain parameters
of the elliptic curve. Obviously, it would be advantageous to use a point multiplication
method that provides very fast execution times for the actual multiplication while taking
possibly longer to do the necessary precomputation. We have implemented two such
multiplication methods, the fixed-base comb method (Algorithm 5.3.5) for general binary
curves and the fixed-base window TNAF method (Algorithm 5.4.5) for Koblitz curves.

Figure 6.5.1 Execution times and precomputation times of different fixed-point multi-
plication methods on the Sharp Zaurus (163-bit Koblitz curve).
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Figure 6.5.1 compares the timings of our implementation of these two methods de-
pending on the number of precomputed points. Note, that the fixed-base comb method
requires the precomputation of 2wcomb − 1 ≈ 2wcomb points for a window width of wcomb,
and that the fixed-base window TNAF method requires the precomputation of 2wTNAF−2

points for a window width of wTNAF. Obviously, the fixed-base comb method outper-
forms the fixed-base window TNAF method for greater window sizes. The reason for this
behavior is that the fixed-base window TNAF method requires the computation of the
width-w TNAF, which is computationally more expensive for greater window sizes than
the simple bit reordering that the fixed-base comb method applies.

According to the timings of our implementation (see Figure 6.5.1), the fixed-base comb
method with a precomputation of 512 points, which corresponds to a window-width wcomb

of 9 leads to the best performance while still having an acceptable precomputation time.
The figure clearly shows that further increasing the window size leads to a 9% faster
multiplication time but almost doubles the precomputation time. The size of memory
required for the precomputed points is proportional to the precomputation time. Thus,
this is another reason for choosing the window-width to be 9.

Figure 6.5.2 Execution times (precomputation + multiplication) of the window TNAF
method (163-bit Koblitz curve).
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It turns out that for the second type of multiplication there are three possible methods,
the Montgomery method, the comb method and the window TNAF method. Figure 6.5.2
demonstrates the execution times (total time of multiplication and precomputation) of
the window TNAF method for different window sizes. Obviously, the optimal choice
for the window size is 4, which is also the minimum value our implementation supports.
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Finally, Table 6.5.1 gives an overview of the execution times of the window TNAF method,
the Montgomery method and the comb method. These values suggest that the window
TNAF method with a window-width of 4 is the best choice for Koblitz curves and the
Montgomery method is the best choice for arbitrary curves.

Table 6.5.1 Execution times of different multiplication methods for arbitrary points on
Sharp Zaurus (163-bit Koblitz curve).

Method
Execution Time

(for precomputation and
main computation)

Window TNAF (w = 4) 5.32 ms
Montgomery 8.96 ms

Comb (w = 2) 13.68 ms

Finally, we should mention that there is also a method called Shamir’s trick [19] for
simultaneously computing two point multiplications as they are necessary for the ECDSA
verify operation (Algorithm 6.5.1). However, the performance of this method turns out
to be worse than doing two multiplications and one addition using the methods discussed
above (see Table 6.5.2).

Algorithm 6.5.1 Simultaneous point multiplication (Shamir’s trick) [19]

INPUT: Window width w, k = (ks−1, . . . , k1, k0)2, l = (ls−1, . . . , l1, l0)2, P , Q.
OUTPUT: kP + lQ.

1: Compute iP + jQ for all i, j ∈ [0, 2w − 1].
2: Write k = (kd−1, . . . , k1, k0) and l = (ld−1, . . . , l1, l0) where each ki and li is a bitstring

of length w, and d = dt/we.
3: R←− O.
4: for i = d− 1 downto 0 do
5: R←− 2wR.
6: R←− R + (kip + liQ).
7: return R.
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Table 6.5.2 Execution times of verify operation with Shamir’s trick on Sharp Zaurus
(163-bit Koblitz curve).

Window Width Execution Time
without Shamir’s trick 11.64 ms

w = 2 25.96 ms
w = 3 23.26 ms
w = 4 22.38 ms
w = 5 23.42 ms
w = 6 27.10 ms

Table 6.5.3 summarizes which multiplication methods we chose for which case together
with the optimal window sizes.

Table 6.5.3 Overview of the used multiplication methods

General Curves Koblitz Curves

Arbitrary Point Montgomery Method Window TNAF method (w = 4)
Fixed Point Fixed-base Comb Method (w = 9)

6.5.2. Modular Architecture

In order to offer the chance to use different multiplication methods for different types of
curves, we organize the ECDSA layer of our implementation in a modular way. This is
done with a structure of type ecdsaDomain that is initialized during run-time with values
tailored to the elliptic curve to be used. Here is how this structure looks like:

typedef struct

{

EllipticCurvePoint G;

gf2mShortElement n;

gf2mLongElement mu;

EllipticCurve *curve;

// Precomputed Points

EllipticCurvePoint *FixedBasePrecomputedPoints;

EllipticCurvePoint *SimultaneousPrecomputedPoints;

// Function pointers to the arithmetic methods to be used
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void (*ecpointMultArbitrary)();

void (*ecpointMultGenerator)();

void (*ecpointMultSimultaneous)();

} ecdsaDomain;

It contains some elliptic curve domain parameters, the precomputed value mu that is
used for long integer modular reduction (see Section 6.3.2 for details), two arrays of
precomputed points for the multiplication methods that use precomputation and three
function pointers. In the function ecdsaInitDomain(), these function pointers are set
to point to the optimal multiplication methods depending on the type of elliptic curve
as discussed above. The precomputation for these methods is done in the initialization
function. The memory for the arrays of precomputed points is allocated dynamically. We
provide the function ecdsaFreeDomain() to free the allocated memory.

6.5.3. Random Number Generation

The signature generation and certainly the key generation according to ECDSA require
the generation of random numbers. These random numbers must be strong, i.e. an
attacker should not be able to predict the random number or parts of it. Otherwise the
signature system would be vulnerable to attacks as described in [26]. Since the OpenSSL
library already contains a well-designed random number generator, we use the output
of the OpenSSL function RAND_bytes() for our random numbers. To ensure that the
obtained number is not greater than the modulus n, we perform a modular reduction
step.

6.6. Integration into OpenSSL

For the integration into OpenSSL we used the following OpenSSL struct, which is defined
in the file openssl/ec.h:

typedef struct ecdsa_method

{

const char *name;

ECDSA_SIG *(*ecdsa_do_sign)(const unsigned char *dgst, int dgst_len,

EC_KEY *eckey);

int (*ecdsa_sign_setup)(EC_KEY *eckey, BN_CTX *ctx, BIGNUM **kinv,

BIGNUM **r);

int (*ecdsa_do_verify)(const unsigned char *dgst, int dgst_len,

ECDSA_SIG *sig, EC_KEY *eckey);

int flags;

char *app_data;

} ECDSA_METHOD;
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Our implementation of this struct as well as the interface functions can be found in the
file openssl_interface.c. Here is how it looks like:

static ECDSA_METHOD rubcosy_ecdsa_meth = {

"RubCoSy ECDSA method",

rubcosy_ecdsa_do_sign,

rubcosy_ecdsa_sign_setup,

rubcosy_ecdsa_do_verify,

0, /* flags */

NULL /* app_data */

};

The declarations of the functions we implemented are in the file ecdsa.h. We implemented
our own version of the ecdsa_do_sign()-method, the ecdsa_sign_setup()-method, and
the ecdsa_do_verify()-method. The implementation basically converts the OpenSSL
types EC_KEY, BIGNUM, and ECDSA_SIG to the corresponding lightweight types of our
ECDSA implementation and calls the corresponding functions of our implementation.
It also calls the initialization routines whenever necessary.

Figure 6.6.1 Call Graph for the ECDSA do sign()-method.

ECDSA_do_sign()

ECDSA_OpenSSL() -> ecdsa_do_sign()

ECDSA_RubCoSy() -> ecdsa_do_sign()

rubcosy_check_domain()

rubcosy_domain_init()

ECDSA_sign_setup()

ecdsaSign_do()

ecdsaFreeDomain()

ecdsaInitDomain()

Part of our implementation (OpenSSL Interface Layer)
Part of our implementation (ECDSA Layer)
Part of the OpenSSL implementation
Part of the OpenSSL implementation (not invoked)

Call OpenSSL routines in 
case of unsupported curves

Figure 6.6.1 illustrates what happens when the OpenSSL framework invokes the ECDSA
signature generation. The OpenSSL function ECDSA_do_sign() calls the member func-
tion ecdsa_do_sign() of the ECDSA_METHOD-struct. If we replace the default struct with
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our implementation, our version of the ecdsa_do_sign()-function is invoked. Then, the
functions rubcosy_check_domain() and rubcosy_domain_init() check whether our im-
plementation supports the requested elliptic curve. If not, the corresponding member
function of the standard OpenSSL method struct is invoked. However, in case we do
support the elliptic curve, the domain parameters are initialized (i.e. dynamic mem-
ory is allocated, precomputation is done). Then, our implementation behaves similar
to OpenSSL and first calls the OpenSSL function ECDSA_sign_setup(), followed by the
ecdsaSign_do()-method, which is part of our ECDSA Sign and Verify Layer.

Figure 6.6.2 Call Graph for the ECDSA sign setup()-method.

ECDSA_sign_setup()

ECDSA_OpenSSL() -> ecdsa_sign_setup()

ECDSA_RubCoSy() -> rubcosy_ecdsa_sign_setup()

rubcosy_check_domain()

rubcosy_domain_init()

ecdsaSign_setup()

ecdsaFreeDomain()

ecdsaInitDomain()

Part of our implementation (OpenSSL Interface Layer)
Part of our implementation (ECDSA Layer)
Part of the OpenSSL implementation
Part of the OpenSSL implementation (not invoked)

Call OpenSSL routines in 
case of unsupported curves

The OpenSSL function ECDSA_sign_setup() behaves similar to ECDSA_do_sign()

(Figure 6.6.2) and calls, in case the elliptic curve is supported, the ecdsaSign_verify()-
method, which is again part of our ECDSA Sign and Verify Layer.

Finally, Figure 6.6.3 describes which functions are called when the OpenSSL frame-
work performs a signature verification. The actual verification is done using our
ecdsaVerify()-method.

How can a program tell OpenSSL to use our optimized algorithms instead of the
OpenSSL algorithms? We provide the function ECDSA_RubCoSy() which returns a pointer
to the ECDSA_METHOD struct mentioned before. This pointer can be passed to the OpenSSL
function void ECDSA_set_default_method(const ECDSA_METHOD *) in order to inform
the OpenSSL framework that our optimized implementation shall be used instead of the
OpenSSL implementation. This can be done in the global initialization section of the
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program. The function rubcosy_domain_free() should be called in the global finaliza-
tion section of the program in order to free all memory dynamically allocated by our
implementation.

Figure 6.6.3 Call Graph for the ECDSA do verify()-method.

ECDSA_do_verify()

ECDSA_OpenSSL() -> ecdsa_do_verify()

ECDSA_RubCoSy() -> rubcosy_ecdsa_do_verify()

rubcosy_check_domain()

rubcosy_domain_init()

ecdsaVerify()

ecdsaFreeDomain()

ecdsaInitDomain()

Part of our implementation (OpenSSL Interface Layer)
Part of our implementation (ECDSA Layer)
Part of the OpenSSL implementation
Part of the OpenSSL implementation (not invoked)

Call OpenSSL routines in 
case of unsupported curves

6.7. Optimizations

To increase the performance of our implementation, we primarily tried three different
optimization methods. Of course, we also paid attention to producing efficient and low-
overhead code throughout the whole implementation. However, we expected the three
approaches

� inline functions

� loop unrolling

� inline assembler

to significantly increase the execution speed of our verify and sign operations. In this
chapter we describe these three approaches in detail. Additionally, we present our auto-
matic source code generator, which enables us to generate source code that is tailored to
specific elliptic curves with specific key sizes. Hence, our implementation is not tied to
one particular curve but can be configured to support any binary curve without loss of
performance.
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6.7.1. Inline Functions

Inline functions are an extension to the C programming language and allow the program-
mer to direct the compiler to integrate the function’s code into the code of its callers.
This eliminates the function-call overhead and might also improve the performance of
the compiler-optimized code. The trade-off is, however, that the object code may be-
come larger. Actually, the only difference to the conventional macro method which uses
#define-statements to replace normal functions is that the type checking during com-
pilation is not disabled. Furthermore, debugging the code is much easier, because the
inlining can be disabled with a compiler switch leading to normal function code.

In our implementation, source files with the term inline within their filename contain
the source code for inline functions. It was necessary to put them into separate files,
because the compiler needs to see their source while compiling the source of the callers,
i.e. the source of the inline functions has to be included in all source files that contain
functions that call these inline functions.

The typical functions that we declared as inline functions are utility functions, e.g.
functions that assign the coordinates of a point to another point or functions that compare
the absolute values of two long integers. Nevertheless, using our automatic source code
generation tool, we could compare the speed of a number of combinations and choose the
optimal combination (see also Section 6.7.4).

6.7.2. Loop Unrolling

The largest gain in performance can be achieved with so-called loop unrolling. With this
method, loops in the source code like

for (i = 0; i < 10; i++)

foo[i] = 0;

are unrolled, i.e. their code is written as

foo[0] = 0;

foo[1] = 0;

foo[2] = 0;

foo[3] = 0;

...

foo[9] = 0;

In modern processors with pipeline architecture short loops significantly deteriorate the
execution speed. The reason for this is that a loop is essentially a number of instructions
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and a conditional branch instruction at the end. The conditional branch evaluates an ex-
pression that changes within the loop body. In our example above, the branch instruction
checks whether the variable i is less than 10 after each loop cycle. In a pipeline archi-
tecture the processor cannot load the next instruction into the pipeline as long as the
expression is not evaluated, because it does not know which will be the next instruction
(the first instruction of the loop or the instruction following the loop).

Imagine, for example, we have a 4-stage pipeline with the following stages:

1. Fetch (F):
The next instruction is fetched from the instruction buffer.

2. Decode (D):
The instruction is decoded, i.e. the processor examines which operands will be
needed and what shall be done with them.

3. Execute (E):
The processor executes the instruction, e.g. adds two operands.

4. Write back (W):
The result of the execution step is written to the register file and is now available
for following instructions.

The CPU instructions implementing the loop above written in pseudocode might be

0: foo[i] = 0;

1: i = i + 1;

2: if (i < 10) goto 0;

3: ...

4: ...

As Figure 6.7.1 illustrates, the conditional jump in instruction 2 cannot be executed
before the result of instruction 1 is written back to the register file. Moreover, it depends
on the result of instruction 2 whether instruction 3 or instruction 0 is executed next.
Hence, instruction 0 will be fetched after instruction 2 is executed and two holes (NOP-
operations) are inserted into the pipeline.

Unrolling the loops reduces the number of branch instructions within the code, so
that the pipeline can be filled continuously with instructions. Hence, the instruction
throughput and therefore the execution speed of the operations rises.
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Figure 6.7.1 Stalled pipeline, because the result of a previous instruction is not available
on time.
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In our case, unrolling the loops more than doubled the execution speed of the signature
and verify operations. However, we did not unroll every loop. For example, in the algo-
rithm for multiplying two elements of F2m (Algorithm 6.3.1), there are two nested loops
(Steps 3 and 4). It turns out, that unrolling the inner loop leads to an 18% performance
gain whereas unrolling both loops deteriorates the performance. For this reason, we used
our automatic source code generation utility to determine the level of unrolling that leads
to the best overall performance.

Together with the inline functions, the loop unrolling optimizations sped up the execu-
tion of the Montgomery point multiplication method from originally 25.2ms on the Sharp
Zaurus to 8.96ms. This is equivalent to an acceleration factor of 2.8. This demonstrates
the significance of this optimization method.

6.7.3. Inline Assembler

The compiler we utilized, the Gnu GCC compiler, supports so-called inline assembler
statements, which embed assembler statements directly in the source code. This enables
the programmer to directly access native processor commands that are not supported
by the C programming language, e.g. bit shift operations or add-with-carry operations.
Additionally the programmer has direct control over the compiler output and may hand-
optimize the order of instruction execution.

Figure 6.7.2 Multi-word bitwise right shift.
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Table 6.7.1 Implementation of the multi-word right shift operation in C and Assembler.

C Source Code
Compiler Generated
Assembler

Hand-written
Assembler

a[0] = a[0] >> 1;

a[0] = a[0] ^

(a[1] << 31);

ldr r3, [%0]

ldr r2, [%0,#4]

mov r3, r3, LSR #1

eor r3, r3, r2, LSL #32

str r3, [%0]

ldr r0, [%0,#20]

movs r0, r0, LSR #1

str r0, [%0,#20]

a[1] = a[1] >> 1;

a[1] = a[1] ^

(a[2] << 31);

ldr r1, [%0,#8]

mov r2, r2, LSR #1

eor r2, r2, r1, LSL #32

str r2, [%0,#4]

ldr r0, [%0,#16]

movs r0, r0, RRX

str r0, [%0,#16]

a[2] = a[2] >> 1;

a[2] = a[2] ^

(a[3] << 31);

ldr r3, [%0,#12]

mov r1, r1, LSR #1

eor r1, r1, r3, LSL #32

str r1, [%0,#8]

ldr r0, [%0,#12]

movs r0, r0, RRX

str r0, [%0,#12]

a[3] = a[3] >> 1;

a[3] = a[3] ^

(a[4] << 31);

ldr r2, [%0,#16]

mov r3, r3, LSR #1

eor r3, r3, r2, LSL #32

str r3, [%0,#12]

ldr r0, [%0,#8]

movs r0, r0, RRX

str r0, [%0,#8]

a[4] = a[4] >> 1;

a[4] = a[4] ^

(a[5] << 31);

ldr r1, [%0,#20]

mov r2, r2, LSR #1

eor r2, r2, r1, LSL #32

str r2, [%0,#16]

ldr r0, [%0,#4]

movs r0, r0, RRX

str r0, [%0,#4]

a[5] = a[5] >> 1;

mov r1, r1, LSR #1

str r1, [%0,#20]

ldr r0, [%0]

movs r0, r0, RRX

str r0, [%0]

We developed hand-written assembler code for some functions that we supposed to per-
form better when written in assembler. Examples for such functions are shift operations
for finite field elements. While performing a multi-word bitwise right shift, one wants to
shift all bits in all words right by one bit and the least significant bit of the more signif-
icant words shall be inserted as most significant bit of the less significant words (Figure
6.7.2). There is an ARM assembler instruction for such an operation, the rotate right in-
struction (RRX). Table 6.7.1 contains an implementation of the right shift operation in C,
the assembler output of the compiler and a hand-written assembler implementation. Ob-
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viously, the compiler-generated code consists of 23 statements whereas the hand-written
code consists of only 18 statements. Hence, we could theoretically increase the execution
speed by about 20%.

However, it turned out that the performance achieved by using native assembler in-
structions for such operations is worse than the performance the compiler optimized code
achieves. The reason for this is that the compiler does a lot of code reordering, i.e. it
changes the order of execution of some statements, and thereby optimizes register us-
age and memory access. Moreover, the compiler does not only consider the relatively
short function that implements the shift operation, but also the longer function that calls
the shift function. Remember, we use inline functions, therefore the compiler looks at
the whole code including the replaced versions of the shift function during optimization.
Unfortunately, using inline assembler prevents the compiler from performing such an opti-
mization, because the hand-written assembler sections are included after the optimization
stage.

Hence, in order to further speed up the code, it would be necessary to hand-write larger
parts of the code in assembler and hand-optimize register usage and memory access. We
believe that the amount of time necessary to do this is not justified by the expected gain
of speed and loss of portability. Consequently, our implementation does not use any inline
assembler.

6.7.4. Automatic Source Code Generator

The reasons for us to develop an automatic source code generator are essentially the
following:

� Loop unrolling for different key sizes cannot be done in C (for example, with
#define-macros).

� Different target platforms or different curves might require different levels of loop
unrolling or inline functions for maximum execution speed.

� The modular reduction algorithm in F2m (Algorithm 6.3.2) heavily depends on the
reduction polynomial, which varies for different curves.

Our generator creates the source files gf2m_gen.h, gf2m_gen.c and gf2m_inline_gen.c.
These files contain the definitions for the finite field arithmetic such as the reduction
polynomial to be used or the extension degree m. Moreover, all finite field arithmetic
operations are generated, since they contain loops that are unrolled. The generator also
creates a version of the modular reduction algorithm (Algorithm 6.3.2) that is tailored to
a specific reduction polynomial. The tool can be configured via command line options or
via the configuration file ecclib.conf. For more details about the usage of the generator
and the meaning of the parameters, we refer to Appendix A.1.2.
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6.8. Known Limitations

For performance reasons our implementation currently has the following limitation:

� Our implementation only supports one particular curve at a time. However, if
signature operations using an unsupported curve are requested via the OpenSSL
interface, the arguments are passed to the original OpenSSL functions, which should
support the requested curve.

Moreover, the code generation tool can be used to change the curve to be supported
before compilation.

6.9. ECDSA Timings

In this section, we present the execution times for ECDSA signature generation and
verifation of our implementation. The measurements are obtained using the C function
clock(). We call this function before and after a block of functions to be measured. The
execution time in microseconds can be calculated by dividing the difference ∆tClock by
the constant CLOCKS_PER_SEC.

Table 6.9.1 presents the execution times of our implementation compared to the OpenSSL
implementation. Obviously, our approach of using efficient algorithms tailored to a partic-
ular curve yields a performance gain of a factor of about 4–6 for the signature generation
and 3–6 for the signature verification.

Table 6.9.1 Execution times in milliseconds for signature operations obtained on a Sharp
Zaurus at 206MHz. The OpenSSL times were obtained using the OpenSSL development
snapshot of the OpenSSL crypto library from 20-Dec-2002.

Curve Name Curve Type Key Size
Our

Implementation
OpenSSL

Implementation
Sign Verify Sign Verify

sect113r1 random 113bit 2.8ms 7.5ms 12.1ms 22.9ms
sect131r1 random 131bit 3.8ms 11.5ms 22.1ms 43.4ms
sect163r1 random 163bit 5.7ms 17.9ms 28.8ms 55.9ms
sect193r1 random 193bit 7.6ms 26.0ms 41.6ms 80.9ms
sect233r1 random 233bit 10.1ms 37.3ms 56.3ms 111.1ms
sect283r1 random 233bit 15.4ms 59.6ms 103.3ms 205.5ms

sect163k1 Koblitz 163bit 5.4ms 11.7ms 28.8ms 55.9ms
sect233k1 Koblitz 233bit 10.1ms 21.8ms 56.3ms 111.1ms
sect239k1 Koblitz 233bit 10.5ms 22.7ms 57.7ms 113.9ms
sect283k1 Koblitz 283bit 15.5ms 33.7ms 103.3ms 205.5ms
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7. Previous Work

In the past years since Miller and Koblitz proposed Elliptic Curve Cryptosystems various
papers dealt with the efficient implementation of ECC on different platforms. In this
section, we present some of this work together with the execution times on different
platforms.

In [54] the authors describe an efficient software implementation of elliptic curves that
is optimized for processors with 64-bit word size. The paper mentions a couple of useful
tricks for an optimized implementation. The execution time for a scalar point multiplica-
tion on an elliptic curve over F2155 is 124ms on a Sun SPARC IPC at 25MHz and 9.9ms
on a DEC Alpha 3000 at 175MHz.

An extensive study of software implementation of the NIST-recommended elliptic curves
over binary fields can be found in [19] by Hankerson, Hernandez and Menezes. We took
most algorithms from this paper. The authors treat general elliptic curves over F2m as well
as Koblitz curves whose special structure can be exploited for faster arithmetic. They
obtained the execution times for scalar point multiplications on a Pentium II 400MHz
workstation. See Table 7.0.2 for an overview of the results.

Table 7.0.2 Execution times for scalar point multiplication on a Pentium II at 400MHz
using different algorithms [19].

Underlying field
F2163 F2233 F2283

Random Curves
Binary method (affine coordinates) 9.178 ms 21.891 ms 34.845 ms
Binary method 4.716 ms 10.775 ms 16.123 ms
Binary NAF method 4.002 ms 9.303 ms 13.896 ms
Window NAF method with w = 4 3.440 ms 7.971 ms 11.997 ms
Montgomery method 3.240 ms 7.697 ms 11.602 ms
Fixed-base comb method with w = 4 1.683 ms 3.966 ms 5.919 ms

Koblitz Curves
TNAF method 1.946 ms 4.349 ms 6.612 ms
Window TNAF method with w = 5 1.442 ms 2.965 ms 4.351 ms
Fixed-base window TNAF with w = 6 1.176 ms 2.243 ms 3.330 ms

Weimerskirch, Paar and Shantz implemented elliptic curves over binary fields on a
PalmOS device with Motorola Dragonball CPU running at 16 MHz [64]. They chose the
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NIST-recommended random curves and Koblitz curves over F2163 . The execution times
are summarized in Table 7.0.3.

Table 7.0.3 Execution times for scalar point multiplication on a Dragonball CPU at 16
MHz using different algorithms [64]. The underlying field is F2163 .

Random Curves
Addition-subtraction method 3310 ms
Sliding windows method (w = 4) 3070 ms
Width-w addition-subtraction method 2960 ms
Montgomery method 2730 ms
Fixed-base comb method with w = 4 1430 ms
Fixed-base comb method with w = 8 790 ms

Koblitz Curves
TNAF method 1670 ms
Window TNAF method with w = 4 1510 ms
Window TNAF method with w = 5 1680 ms
Fixed-base window TNAF with w = 6 1080 ms
Fixed-base window TNAF with w = 10 870 ms

In September 2002, Sun Microsystems donated an elliptic curve implementation to
the OpenSSL project [3], a programming group that works on an open-source version
of the Secure Sockets Layer (SSL) encryption system. So far, the code is not optimized
for particular platforms or elliptic curves. Currently the Montgomery method and the
Window NAF method are used for scalar point multiplication on curves over binary fields.
In [18] execution times for the ECDSA sign and verify operation on a Yopy PDA with
StrongARM CPU at 200 MHz and an Sun UltraTM-80 server equipped with a 450 MHz
UltraSPARC II processor are presented. The execution times of the ECDSA sign and
verify operations are summarized in Table 7.0.4.

Table 7.0.4 Execution times of ECDSA operations on a StrongARM CPU at 200 MHz
(Yopy) and on an UltraSPARC II processor at 450 MHz.

Platform ECDSA-Operation 163-bit 193-bit

Ultra-80 Verify 6.8 ms 9.2 ms
Sign 13.0 ms 18.1 ms

Yopy Verify 46.5 ms 76.6 ms
Sign 24.5 ms 39.0 ms
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8. Summary and Conclusions

In this thesis, we carefully analyzed the secure charging protocol with respect to the
use of different digital signature schemes. An important part of this analysis was the
recommendation of key sizes to be used. Due to the micro payment character of this
application, we believe that key sizes below the commonly recommended 1024-bit RSA
are possible. According to our examinations, the required level of security, which is that
— with a financial effort proportionate to the expected gain of about 200

�
— it should

not be possible to break the keys in less than 24 hours, can be achieved with 704-bit
RSA keys (respectively, 131-bit ECDSA over binary curves) until the year 2006. For
a sufficient protection until the year 2015, we recommend larger RSA keys with a size
of at least 1024 bits (respectively, 163-bit ECDSA over binary curves). Of course, these
recommendations must be treated with care, since we cannot fully anticipate the effects of
progress in cryptanalysis. We therefore recommend to continuously monitor the progress
in this area and to adapt the key sizes when necessary.

Having determined the required level of security, we evaluated the performance of the
RSA signature scheme and the ECDSA signature scheme on the basis of the execution
times on our target platform. We proposed a new measure that takes into account the
special organization of state-of-the-art communication protocols such as the secure charg-
ing protocol. In these protocols, a device has to perform signature verification, signature
generation or both — depending on its role in the communication process. As a result of
our examination we can say that signature schemes based on elliptical curves outperform
classical signature schemes such as RSA in particular for high levels of security. With
respect to the required storage space and transmission bandwidth, ECC is clearly the
better choice. Nevertheless, in some applications that predominantly require signature
verification or need only very low levels of security, RSA may still be a good choice —
even for applications in the area of wireless communications.

We implemented digital signatures based on general elliptic curves over binary finite
fields as well as Koblitz curves. During this process we implemented several different point
multiplication methods and determined the optimal choice for our application and target
platform. Using the fixed-base comb method for multiplying the base point of the curve
and the Montgomery method for multiplying arbitrary points, a signature generation on
a StrongARM CPU clocked at 206 MHz takes 5.7ms and a signature verification takes
17.9ms for 163-bit ECDSA. In case of Koblitz curves, we use the window TNAF method,
which enables us to verify a signature on a 163-bit Koblitz curve in 11.7ms. This is a
speed up of 500% compared to the current ECDSA implementation using curves over F2m

of the OpenSSL project.

Although our implementation supports only one particular curve during run-time, we
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provided a tool that allows easy adaptation to different curves during compile time. Fi-
nally, the integration into the OpenSSL framework allows easy reuse of the implementation
in future communication protocols or other applications.

We integrated our ECDSA implementation into the prototype implementation of the
Secure Charging Protocol, which is currently developed by Lamparter, Paul, and Westhoff.
A test run of the protocol prototype showed that ping packets between different nodes of a
test network could be successfully transmitted. Unfortunately, the current prototype does
not allow any statistics about the network performance and especially the performance of
the digital signature operations. Hence, an interesting objective for future work would be
to examine the network performance and the computational load for the network nodes
caused by the signature operations in a realistic network scenario.
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A. Appendix

A.1. Ecclib Manual

A.1.1. Configuration with eccdefs.h

The file eccdefs.h contains a number of #define’s which influence the behavior of the
Ecclib code:

� #define USE_OPENSSL_RNG

This #define should always be enabled, because it tells the compiler to use the
random number generator shipped with the OpenSSL library. If the #define is
disabled, simple calls to rand() are used to generate the random secrets needed for
the signature generation process.

� #define USE_OPENSSL_FOR_UNSUPPORTED_FIELD

This #define tells our implementation to call the OpenSSL default routines for
signature generation and verification if it does not support the requested curve.
Remember that within OpenSSL the type of curve that shall be used for the signa-
ture operations can be dynamically chosen, therefore it might be the case that our
implementation has not been compiled for the requested curve.

� #define SKIP_DGST_LEN_CHECK

OpenSSL usually checks if the length of the digest of the message to be signed is
greater than the size of the key in bytes. This causes problems when the key size is
less than 160-bits (20 bytes). By enabling this switch one can tell our implementa-
tion to skip the check. This #define is also enabled by default.

� #define TEST_EXEC_TIME

This defines how the execution times of the self-test routines are obtained. If the
switch is enabled, the self-test routines do not check if the results of the operations
are correct, but only measure the execution times. The screen output is kept to a
minimum in this mode. This #define is disabled by default.

� #define USE_MEMxxx_FUNCTIONS

This #define determines whether our implementation uses functions like memcpy()

or memset() or replaces them with loops. We did not notice any influence on the
performance, so the switch is disabled by default.

� #define AUTOSKIP_LEADING_ZEROS

This switch should always be disabled.
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� #define USE_SHAMIRS_TRICK

Enabling this switch tells the compiler to use Shamir’s trick (Algorithm 6.5.1) of
simultaneous point multiplication for the signature verification. As stated in Section
6.5.1, this deteriorates the overall performance, so this switch should always be
disabled.

A.1.2. Code Generator EcclibCodeGen and Configuration ecclib.conf

As mentioned in Section 6.7.4, EcclibCodeGen generates the source files gf2m_gen.h,
gf2m_gen.c, and gf2m_inline_gen.c during the make process. The tool can be config-
ured with the configuration file ecclib.conf.

The options within ecclib.conf are the following:

� CURVE=〈OpenSSL Curve Identifier String〉
This option determines which elliptic curve is supported by our library. The string
〈OpenSSL Curve Identifier String〉 is used within OpenSSL to denote the curve and
can be found in the OpenSSL header file openssl/obj_mac.h. Examples for such
strings are sect113r1, sect113r2, sect131r1, sect131r2, sect163r1, sect163r2,
sect163k1, sect193r1, sect193r2, sect233r1, and sect233k1. The names are the
same as the names of the curves standardized by SECG in [44]. Note, that only
curves over F2m are supported.

� COMBWINDOW=〈wcomb〉
This specifies the size of the window used for the fixed-base comb method for point
multiplication (Algorithm 5.3.5). Note, that our implementation demands a lower
bound of wcomb ≥ 2.

� TNAFWINDOW=〈wTNAF〉
The size of the window used for the window TNAF method (Algorithm 5.4.5) is
determined by this option. Note, that our implementation demands a lower bound
of wTNAF ≥ 4.

� SHAMIRWINDOW=〈wShamir〉
Since we also implemented simultaneous point multiplication (Algorithm 6.5.1), this
option determines the window size for this algorithm.

� MAKEINLINE=1111100111101101

This option determines which of the 16 automatically generated functions shall be
inline functions and which not. Each digit corresponds to one function. A value of 1
means that the function shall be generated as inline function and a value of 0 means
that it shall be a normal function. Normally, these settings should not be changed,
because they were determined with intensive tests. However, if the target platform
differs from the original Zaurus PDA platform, changing this setting might improve
the performance.
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� UNROLLLEVEL=2222222122212222

Our source code generator can be configured to support different levels of loop
unrolling. Each digit corresponds to one of the 16 automatically generated functions.
The values determine whether

(0) functions like memcpy() shall be used,

(1) simple for-loops shall be used,

(2) most loops shall be unrolled,

(3) all loops shall be unrolled or

(4) assembler implementations shall be used.

Note, that not every function supports all options. Please consider the source code
of the generator for details. Normally, these settings should not be changed, because
they were determined with intensive tests. However, if the target platform differs
from the original Zaurus PDA platform, changing this setting might improve the
performance.

� HEADER=〈Filename〉
Defines the name of the file that shall contain source code for the generated header
file. The default filename is gf2m_gen.h.

� SOURCE=〈Filename〉
Defines the name of the file that shall contain source code for the generated source
file. The default filename is gf2m_gen.c.

� INLINE=〈Filename〉
Defines the name of the file that shall contain source code for the generated source
file containing the inline function. The default filename is gf2m_inline_gen.c.

Finally, note that the CURVE=〈OpenSSL Curve Identifier String〉 option can also be
passed via command line parameter. The code generator then uses the passed setting
and updates the ecclib.conf file.

A.1.3. Self-Test-Routines

With make test the executable ecclib.out, which contains a number of self-test rou-
tines, is built. Which self-test routines are executed can be determined in the source file
main.cpp. Here is a list of the tests available together with the corresponding #define:

� #define TEST_BASIC_ARITHMETIC

This test routine checks whether the finite field and long integer arithmetic works
correctly. In particular, the finite field multiplication, addition and squaring is
checked. Moreover, the routine tests the elliptic curve point addition in affine and
also in mixed coordinates. The test determines whether elliptic curve point doubling
works properly. Finally, almost all long integer routines are checked.
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� #define TEST_POINT_MULTIPLICATION

This #define enables the elliptic curve point multiplication tests. All methods
that are implemented are called with the same input parameters and checked for
correctness. This routine also determines the execution times of the different point
multiplication methods.

� #define TEST_ECCLIB_SIGNATURE

This test checks whether signature generation and signature verification works cor-
rectly. The tests are performed on the ECDSA Sign and Verify Layer, hence, the
OpenSSL interface is not involved. Consequently, the execution times obtained with
this test are slightly better due to the reduced overhead.

� #define TEST_OPENSSL_COMPATIBILITY

By enabling this #define, the compatibility of the signatures of our implementation
to the OpenSSL signature routines is checked. This is done by generating a signature
with our routines and verifying it with the OpenSSL routines. The test function
also generates signatures with the OpenSSL routines and verifies them with our
routines.

� #define TEST_OPENSSL_SIGNATURE

The integration into OpenSSL is checked with this test routine. Consequently, the
signing and verifying is performed by invoking the OpenSSL interface. In addition
to this, the execution times are measured.

� #define TEST_COMPARE_RSA_VS_ECDSA

This test compares the execution times of our ECDSA implementation with the
execution times of the OpenSSL implementation of the RSA signature scheme. The
bit sizes of the keys are chosen so that both schemes provide a comparable level of
security.

A.2. Manual of the Certificate Tool CertGen

The CertGen-Tool can be used to generate ECDSA keys and certificates. It supports
three different functions:

1. Generate a self-signed certificate for the Certificate Authority (CA) containing the
CA public key and a separate file that contains the CA private key

2. Generate a CA-signed certificate for a node containing the node’s public key and a
separate file that contains the node’s private key

3. Verify a certificate, i.e. check if the CA signature is valid and the certificate has not
expired

These functions use our ECDSA implementation for the signature generation and verifi-
cation and the OpenSSL routines for the certificate handling.
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A.2.1. CA Certificate Generation

In order to generate a set of CA keys and a certificate, CertGen should be invoked with
the following command:

CertGen generate ca 〈ca-arguments〉

where 〈ca-arguments〉 includes the following mandatory parameters:

� ISSUER=〈name of the issuer of the certificate〉

� SUBJECT=〈name of the subject of the certificate〉

� SERIALNUMBER=〈serial-number of the certificate〉

� CA-CERTFILE=〈name of the file that shall contain the certificate to be created〉

� CA-KEYFILE=〈name of the file that shall contain the private key to be created〉

A.2.2. Node Certificate Generation

In order to generate a set of node keys and a certificate, CertGen should be invoked with
the following command:

CertGen generate node 〈node-arguments〉

where 〈node-arguments〉 includes the following mandatory parameters:

� ISSUER=〈name of the issuer of the certificate〉

� SUBJECT=〈name of the subject of the certificate〉

� SERIALNUMBER=〈serial-number of the certificate〉

� CA-KEYFILE=〈name of the file that contains the private key to sign the node certificate〉

� CERTFILE=〈name of the file that shall contain the node certificate to be created〉

� KEYFILE=〈name of the file that shall contain the private key to be generated〉
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A.2.3. Certificate Verification

In order to verify a certificate, CertGen should be invoked with the following command:

CertGen verify 〈verify-arguments〉

where 〈verify-arguments〉 includes the following mandatory parameters:

� CA-CERTFILE=〈file name of the CA certificate〉
� CERTFILE=〈file name of the certificate to be verified〉

A.3. OpenSSL Command Line Parameters

We used OpenSSL to generate RSA keys and RSA certificates as well as RSA signatures.
In this section, we shortly describe the necessary OpenSSL command line options.

A.3.1. Generate RSA private key file

The following command generates a file containing a private RSA key with a size of keysize
bits:

openssl genrsa -out 〈keyfile〉 〈keysize〉

To convert the file keyfile to the ASN.1 distinguished encoding rules (DER), we used the
following command:

openssl rsa -outform DER -out 〈name of DER encoded file〉 < 〈keyfile〉

A.3.2. Generate RSA certificate

Once a private key has been generated, the following OpenSSL commands can be used to
generate a DER encoded certificate file with the name certfile:

openssl req -new -key 〈keyfile〉 -out 〈certificate request file〉
openssl x509 -req -in 〈certificate request file〉 -signkey 〈keyfile〉

-out 〈certfile〉 -outform DER

A.3.3. Generate RSA signature

To generate a RSA signature of the input file infile using the private key stored in the file
keyfile and save it to the file sigfile, the following command can be used:

openssl rsautl -inkey 〈keyfile〉 -in 〈infile〉 -out 〈outfile〉 -raw
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